Graphene surface plasmons at the near-infrared optical regime
نویسندگان
چکیده
Graphene has been identified as an emerging horizon for a nanoscale photonic platform because the Fermi level of intrinsic graphene can be engineered to support surface plasmons (SPs). The current solid back electrical gating and chemical doping methods cannot facilitate the demonstration of graphene SPs at the near-infrared (NIR) window because of the limited shift of the Fermi level. Here, we present the evidence for the existence of graphene SPs on a tapered graphene-silicon waveguide tip at a NIR wavelength, employing a surface carrier transfer method with molybdenum trioxides. The coupling between the graphene surface plasmons and the guiding mode in silicon waveguides allows for the observation of the concentrated field of the SPs in the tip by near-field scanning optical microscopy. Thus the hot spot from the concentrated SPs in the graphene layer can be used as a key experimental signature of graphene SPs. The NIR graphene SPs opens a new perspective for optical communications, optical sensing and imaging, and optical data storage with extreme spatial confinement, broad bandwidth and high tunability.
منابع مشابه
Cavity-enhanced mid-infrared absorption in perforated graphene
Graphene’s unique electronic structure due to its two-dimensional nature results in numerous advantageous properties, such as highly tunable chemical potential and the ability to support highly confined surface plasmons with exceptionally long lifetimes. In the context of optical absorbers, we theoretically calculate, using both analytical and numerical techniques, that the coupling of a contin...
متن کاملPlasmonics in graphene at infrared frequencies
We point out that plasmons in doped graphene simultaneously enable low losses and significant wave localization for frequencies below that of the optical phonon branch Oph 0.2 eV. Large plasmon losses occur in the interband regime via excitation of electron-hole pairs , which can be pushed toward higher frequencies for higher-doping values. For sufficiently large dopings, there is a bandwidth o...
متن کاملHighly confined tunable mid-infrared plasmonics in graphene nanoresonators.
Single-layer graphene has been shown to have intriguing prospects as a plasmonic material, as modes having plasmon wavelengths ~20 times smaller than free space (λp ~ λ0/20) have been observed in the 2-6 THz range, and active graphene plasmonic devices operating in that regime have been explored. However there is great interest in understanding the properties of graphene plasmons across the inf...
متن کاملPlasmonics in atomically thin materials.
The observation and electrical manipulation of infrared surface plasmons in graphene have triggered a search for similar photonic capabilities in other atomically thin materials that enable electrical modulation of light at visible and near-infrared frequencies, as well as strong interaction with optical quantum emitters. Here, we present a simple analytical description of the optical response ...
متن کاملCoupling light into graphene plasmons through surface acoustic waves.
We propose a scheme for coupling laser light into graphene plasmons with the help of electrically generated surface acoustic waves. The surface acoustic wave forms a diffraction grating which allows us to excite the long lived phononlike branch of the hybridized graphene plasmon-phonon dispersion with infrared laser light. Our approach avoids patterning the graphene sheet, does not rely on comp...
متن کامل