Exploring Pattern Structures of Syntactic Trees for Relation Extraction
نویسندگان
چکیده
In this paper we explore the possibility of defining an original pattern structure for managing syntactic trees. More precisely, we are interested in the extraction of relations such as drug-drug interactions (DDIs) in medical texts where sentences are represented as syntactic trees. In this specific pattern structure, called STPS, the similarity operator is based on rooted tree intersection. Moreover, we introduce “Lazy Pattern Structure Classification” (LPSC), which is a symbolic method able to extract and classify DDI sentences w.r.t. STPS. To decrease computation time, a projection and a set of tree-simplification operations are proposed. We evaluated the method by means of a 10-fold cross validation on the corpus of the DDI extraction challenge 2011, and we obtained very encouraging results that are reported at the end of the paper.
منابع مشابه
Exploring Syntactic Relation Patterns for Question Answering
In this paper, we explore the syntactic relation patterns for opendomain factoid question answering. We propose a pattern extraction method to extract the various relations between the proper answers and different types of question words, including target words, head words, subject words and verbs, from syntactic trees. We further propose a QA-specific tree kernel to partially match the syntact...
متن کاملExploring Syntactic Features for Relation Extraction using a Convolution Tree Kernel
This paper proposes to use a convolution kernel over parse trees to model syntactic structure information for relation extraction. Our study reveals that the syntactic structure features embedded in a parse tree are very effective for relation extraction and these features can be well captured by the convolution tree kernel. Evaluation on the ACE 2003 corpus shows that the convolution kernel ov...
متن کاملExploring syntactic structured features over parse trees for relation extraction using kernel methods
Extracting semantic relationships between entities from text documents is challenging in information extraction and important for deep information processing and management. This paper proposes to use the convolution kernel over parse trees together with support vector machines to model syntactic structured information for relation extraction. Compared with linear kernels, tree kernels can effe...
متن کاملConvolution Kernels on Constituent, Dependency and Sequential Structures for Relation Extraction
This paper explores the use of innovative kernels based on syntactic and semantic structures for a target relation extraction task. Syntax is derived from constituent and dependency parse trees whereas semantics concerns to entity types and lexical sequences. We investigate the effectiveness of such representations in the automated relation extraction from text. We process the above data by mea...
متن کاملExploring Various Knowledge in Relation Extraction
Extracting semantic relationships between entities is challenging. This paper investigates the incorporation of diverse lexical, syntactic and semantic knowledge in feature-based relation extraction using SVM. Our study illustrates that the base phrase chunking information is very effective for relation extraction and contributes to most of the performance improvement from syntactic aspect whil...
متن کامل