On Semigroups Generated by Two Consecutive Integers and Hermitian Codes

نویسندگان

  • Maria Bras-Amorós
  • Michael E. O’Sullivan
چکیده

Analysis of the Berlekamp-Massey-Sakata algorithm for decoding onepoint codes leads to two methods for improving code rate. One method, due to Feng and Rao, removes parity checks that may be recovered by their majority voting algorithm. The second method is to design the code to correct only those error vectors of a given weight that are also geometrically generic. In this work, formulae are given for the redundancies of Hermitian codes optimized with respect to these criteria as well as the formula for the order bound on the minimum distance. The results proceed from an analysis of numerical semigroups generated by two consecutive integers. The formula for the redundancy of optimal Hermitian codes correcting a given number of errors answers an open question stated by Pellikaan and Torres in 1999. Introduction Numerical semigroups have proven to be very useful in the study of one-point algebraic-geometry codes. On one hand the arithmetic of the numerical semigroup associated to the one-point yields a good bound—called the order bound— on minimum distance [5, 9, 11]. On the other hand, a close analysis of the numerical semigroup and the decoding algorithm commonly used for one-point codes shows that significant improvements in rate may be achieved while maintaining a given error correction capability [6]. In this article we discuss the order bound and improvements to the rate for codes constructed from Hermitian curves. Let us briefly recall the definition of one-point algebraic geometry codes and state the notation we will use. Suppose F is a finite field, F/F a function field and P a rational point of F/F. For m ∈ N0 let L(mP ) be the ring of functions in F having poles only at P and of order at most m. Let vP be the valuation of F associated with P and let Λ = {−vP (f) : f ∈ ⋃ m L(mP )}. Λ is a numerical semigroup. That is, a subset of N0, closed under summation, Universitat Autònoma de Barcelona, [email protected] San Diego State University, [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weierstrass Semigroups and Codes from a Quotient of the Hermitian Curve

We consider the quotient of the Hermitian curve defined by the equation yq + y = xm over Fq2 where m > 2 is a divisor of q + 1. For 2 ≤ r ≤ q + 1, we determine the Weierstrass semigroup of any r-tuple of Fq2 rational points (P∞, P0b2 , . . . , P0br ) on this curve. Using these semigroups, we construct algebraic geometry codes with minimum distance exceeding the designed distance. In addition, w...

متن کامل

Explicit bases for Riemann-Roch spaces of the extended norm-trace function field, with applications AG codes and Weierstrass semigroups

The extended norm-trace function field is a generalization of the Hermitian and norm-trace function fields which are of importance in coding theory. In this paper, we provide explicit bases for certain Riemann-Roch spaces on the extended norm-trace function field. These bases provide explicit generator and parity check matrices for algebraic geometry codes CL ( D, aP∞ + ∑ β∈B aβP0β ) on the ext...

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

Classification of Monogenic Ternary Semigroups

The aim of this paper is to classify all monogenic ternary semigroups, up to isomorphism. We divide them to two groups: finite and infinite. We show that every infinite monogenic ternary semigroup is isomorphic to the ternary semigroup O, the odd positive integers with ordinary addition. Then we prove that all finite monogenic ternary semigroups with the same index...

متن کامل

Coset bounds for algebraic geometric codes

For a given curve X and divisor class C, we give lower bounds on the degree of a divisor A such that A and A− C belong to specified semigroups of divisors. For suitable choices of the semigroups we obtain (1) lower bounds for the size of a party A that can recover the secret in an algebraic geometric linear secret sharing scheme with adversary threshold C, and (2) lower bounds for the support A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009