Oracle-Based Robust Optimization via Online Learning

نویسندگان

  • Aharon Ben-Tal
  • Elad Hazan
  • Tomer Koren
  • Shie Mannor
چکیده

Robust optimization is a common framework in optimization under uncertainty when the problem parameters are not known, but it is rather known that the parameters belong to some given uncertainty set. In the robust optimization framework the problem solved is a min-max problem where a solution is judged according to its performance on the worst possible realization of the parameters. In many cases, a straightforward solution of the robust optimization problem of a certain type requires solving an optimization problem of a more complicated type, and in some cases even NP-hard. For example, solving a robust conic quadratic program, such as those arising in robust SVM, ellipsoidal uncertainty leads in general to a semidefinite program. In this paper we develop a method for approximately solving a robust optimization problem using tools from online convex optimization, where in every stage a standard (non-robust) optimization program is solved. Our algorithms find an approximate robust solution using a number of calls to an oracle that solves the original (non-robust) problem that is inversely proportional to the square of the target accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex optimization

We give novel algorithms for stochastic strongly-convex optimization in the gradient oracle model which return a O( 1 T )-approximate solution after T iterations. The first algorithm is deterministic, and achieves this rate via gradient updates and historical averaging. The second algorithm is randomized, and is based on pure gradient steps with a random step size. This rate of convergence is o...

متن کامل

A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations

A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...

متن کامل

An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources

This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...

متن کامل

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

On Convex Optimization, Fat Shattering and Learning

Oracle complexity of the problem under the oracle based optimization model introduced by Nemirovski & Yudin (1978) is considered. We show that the oracle complexity can be lower bounded by fat-shattering dimension introduced by Kearns & Schapire (1990), a key tool in learning theory. Using this result, we proceed to establish upper bounds on learning rates for agnostic PAC learning with linear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Operations Research

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2015