Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis

نویسندگان

  • Jon Cuccui
  • Rebecca M. Thomas
  • Madeleine G. Moule
  • Riccardo V. D'Elia
  • Thomas R. Laws
  • Dominic C. Mills
  • Diane Williamson
  • Timothy P. Atkins
  • Joann L. Prior
  • Brendan W. Wren
چکیده

Glycoconjugate-based vaccines have proved to be effective at producing long-lasting protection against numerous pathogens. Here, we describe the application of bacterial protein glycan coupling technology (PGCT) to generate a novel recombinant glycoconjugate vaccine. We demonstrate the conjugation of the Francisella tularensis O-antigen to the Pseudomonas aeruginosa carrier protein exotoxin A using the Campylobacter jejuni PglB oligosaccharyltransferase. The resultant recombinant F. tularensis glycoconjugate vaccine is expressed in Escherichia coli where yields of 3 mg l(-1) of culture were routinely produced in a single-step purification process. Vaccination of BALB/c mice with the purified glycoconjugate boosted IgG levels and significantly increased the time to death upon subsequent challenge with F. tularensis subsp. holarctica. PGCT allows different polysaccharide and protein combinations to be produced recombinantly and could be easily applicable for the production of diverse glycoconjugate vaccines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic engineering of Francisella tularensis LVS for use as a novel live vaccine platform against Pseudomonas aeruginosa infections

Francisella tularensis LVS (Live Vaccine Strain) is an attenuated bacterium that has been used as a live vaccine. Patients immunized with this organism show a very long-term memory response (over 30 years post vaccination) evidenced by the presence of indicators of robust cell-mediated immunity. Because F. tularensis LVS is such a potent vaccine, we hypothesized that this organism would be an e...

متن کامل

Pharmacological exploitation of an off-target antibacterial effect of the cyclooxygenase-2 inhibitor celecoxib against Francisella tularensis.

Francisella tularensis, a bacterium which causes tularemia in humans, is classified as a CDC category A bioterrorism agent. In this study, we demonstrate that celecoxib, an anti-inflammatory cyclooxygenase-2 inhibitor in clinical use, exhibits activity against a type A strain of F. tularensis (Schu S4), the live vaccine strain of F. tularensis (a type B strain), and F. novicida ("F. tularensis ...

متن کامل

In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation

BACKGROUND Glycoconjugated vaccines composed of polysaccharide antigens covalently linked to immunogenic carrier proteins have proved to belong to the most effective and safest vaccines for combating bacterial pathogens. The functional transfer of the N-glycosylation machinery from Campylobacter jejuni to the standard prokaryotic host Escherichia coli established a novel bioconjugation methodol...

متن کامل

Glycoconjugate Vaccine Containing Escherichia coli O157:H7 O-Antigen Linked with Maltose-Binding Protein Elicits Humoral and Cellular Responses

Glycoconjugate is one of the most efficacious and safest vaccines against bacterial pathogens. Previous studies of glycoconjugates against pathogen E. coli O157:H7 focused more on the humoral responses they elicited. However, little was known about their cellular responses. In this study, we exploited a novel approach based on bacterial protein N-linked glycosylation system to produce glycoconj...

متن کامل

Kdo Hydrolase Is Required for Francisella tularensis Virulence and Evasion of TLR2-Mediated Innate Immunity

UNLABELLED The highly virulent Francisella tularensis subsp. tularensis has been classified as a category A bioterrorism agent. A live vaccine strain (LVS) has been developed but remains unlicensed in the United States because of an incomplete understanding of its attenuation. Lipopolysaccharide (LPS) modification is a common strategy employed by bacterial pathogens to avoid innate immunity. A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013