High-precision trajectory tracking in changing environments through L1 adaptive feedback and iterative learning

نویسندگان

  • Karime Pereida
  • Rikky R. P. R. Duivenvoorden
  • Angela P. Schoellig
چکیده

Accepted version. Accepted at 2017 IEEE International Conference on Robotics and Automation. c ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Abstract— As robots and other automated systems are introduced to unknown and dynamic environments, robust and adaptive control strategies are required to cope with disturbances, unmodeled dynamics and parametric uncertainties. In this paper, we propose and provide theoretical proofs of a combined L1 adaptive feedback and iterative learning control (ILC) framework to improve trajectory tracking of a system subject to unknown and changing disturbances. The L1 adaptive controller forces the system to behave in a repeatable, predefined way, even in the presence of unknown and changing disturbances; however, this does not imply that perfect trajectory tracking is achieved. ILC improves the tracking performance based on experience from previous executions. The performance of ILC is limited by the robustness and repeatability of the underlying system, which, in this approach, is handled by the L1 adaptive controller. In particular, we are able to generalize learned trajectories across different system configurations because the L1 adaptive controller handles the underlying changes in the system. We demonstrate the improved trajectory tracking performance and generalization capabilities of the combined method compared to pure ILC in experiments with a quadrotor subject to unknown, dynamic disturbances. This is the first work to show L1 adaptive control combined with ILC in experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Precision Trajectory Tracking in Changing Environments Through $\mathcal{L}_1$ Adaptive Feedback and Iterative Learning

Accepted version. Accepted at 2017 IEEE International Conference on Robotics and Automation. c ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to serv...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

An adaptive switching learning control method for trajectory tracking of robot manipulators

In this paper, a new adaptive switching learning control approach, called adaptive switching learning PD control (ASL-PD), is proposed for trajectory tracking of robot manipulators in an iterative operation mode. The ASL-PD control method is a combination of the feedback PD control law with a gain switching technique and the feedforward learning control law with the input torque profile. The to...

متن کامل

Adaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields

Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...

متن کامل

Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study

In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017