Efficient Computation of Sparse Hessians Using Coloring and Automatic Differentiation

نویسندگان

  • Assefaw Hadish Gebremedhin
  • Arijit Tarafdar
  • Alex Pothen
  • Andrea Walther
چکیده

using Coloring and Automatic Differentiation Assefaw H. Gebremedhin, Alex Pothen, Arijit Tarafdar Department of Computer Science and Center for Computational Sciences, Old Dominion University, Norfolk, VA, USA, {[email protected], [email protected], [email protected]} Andrea Walther Institute of Scientific Computing, Technische Universität Dresden, D-01062 Dresden, Germany, [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Acyclic and Star Coloring Algorithms with Application to Computing Hessians

Acyclic and star coloring problems are specialized vertex coloring problems that arise in the efficient computation of Hessians using automatic differentiation or finite differencing, when both sparsity and symmetry are exploited. We present an algorithmic paradigm for finding heuristic solutions for these two NP-hard problems. The underlying common technique is the exploitation of the structur...

متن کامل

REPORTS IN INFORMATICS ISSN 0333-3590 Graph Coloring in Optimization Revisited

We revisit the role of graph coloring in modeling problems that arise in efficient estimation of large sparse Jacobian and Hessian matrices using both finite difference (FD) and automatic differentiation (AD) techniques, in each case via direct methods. For Jacobian estimation using column partitioning, we propose a new coloring formulation based on a bipartite graph representation. This is com...

متن کامل

The Efficient Computation of Sparse Jacobian Matrices Using Automatic Differentiation

This paper is concerned with the efficient computation of sparse Jacobian matrices of nonlinear vector maps using automatic differentiation (AD). Specifically, we propose the use of a graph coloring technique, bicoloring, to exploit the sparsity of the Jacobian matrix J and thereby allow for the efficient determination of J using AD software. We analyze both a direct scheme and a substitution p...

متن کامل

Capitalizing on live variables: new algorithms for efficient Hessian computation via automatic differentiation

We revisit an algorithm (called Edge Pushing (EP)) for computing Hessians using Automatic Differentiation (AD) recently proposed by Gower and Mello (2012). Here we give a new, simpler derivation for the EP algorithm based on the notion of live variables from data-flow analysis in compiler theory and redesign the algorithm with close attention to general applicability and performance. We call th...

متن کامل

The Enabling Power of Graph Coloring Algorithms in Automatic Differentiation and Parallel Processing

We illustrate the essential features of Combinatorial Scientific Computing using our work on graph coloring algorithms for sparse derivative computation as an example.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2009