Efficient Computation of Sparse Hessians Using Coloring and Automatic Differentiation
نویسندگان
چکیده
using Coloring and Automatic Differentiation Assefaw H. Gebremedhin, Alex Pothen, Arijit Tarafdar Department of Computer Science and Center for Computational Sciences, Old Dominion University, Norfolk, VA, USA, {[email protected], [email protected], [email protected]} Andrea Walther Institute of Scientific Computing, Technische Universität Dresden, D-01062 Dresden, Germany, [email protected]
منابع مشابه
New Acyclic and Star Coloring Algorithms with Application to Computing Hessians
Acyclic and star coloring problems are specialized vertex coloring problems that arise in the efficient computation of Hessians using automatic differentiation or finite differencing, when both sparsity and symmetry are exploited. We present an algorithmic paradigm for finding heuristic solutions for these two NP-hard problems. The underlying common technique is the exploitation of the structur...
متن کاملREPORTS IN INFORMATICS ISSN 0333-3590 Graph Coloring in Optimization Revisited
We revisit the role of graph coloring in modeling problems that arise in efficient estimation of large sparse Jacobian and Hessian matrices using both finite difference (FD) and automatic differentiation (AD) techniques, in each case via direct methods. For Jacobian estimation using column partitioning, we propose a new coloring formulation based on a bipartite graph representation. This is com...
متن کاملThe Efficient Computation of Sparse Jacobian Matrices Using Automatic Differentiation
This paper is concerned with the efficient computation of sparse Jacobian matrices of nonlinear vector maps using automatic differentiation (AD). Specifically, we propose the use of a graph coloring technique, bicoloring, to exploit the sparsity of the Jacobian matrix J and thereby allow for the efficient determination of J using AD software. We analyze both a direct scheme and a substitution p...
متن کاملCapitalizing on live variables: new algorithms for efficient Hessian computation via automatic differentiation
We revisit an algorithm (called Edge Pushing (EP)) for computing Hessians using Automatic Differentiation (AD) recently proposed by Gower and Mello (2012). Here we give a new, simpler derivation for the EP algorithm based on the notion of live variables from data-flow analysis in compiler theory and redesign the algorithm with close attention to general applicability and performance. We call th...
متن کاملThe Enabling Power of Graph Coloring Algorithms in Automatic Differentiation and Parallel Processing
We illustrate the essential features of Combinatorial Scientific Computing using our work on graph coloring algorithms for sparse derivative computation as an example.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- INFORMS Journal on Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 2009