Drug dependence, synaptic plasticity, and tissue plasminogen activator.

نویسندگان

  • Kiyofumi Yamada
  • Taku Nagai
  • Toshitaka Nabeshima
چکیده

The mesocorticolimbic dopaminergic system plays an important role in the reinforcing effects of drugs of abuse, and the activity-dependent synaptic plasticity of the system is involved in drug dependence. A DNA microarray screening revealed that the expression levels of tissue plasminogen activator (tPA) mRNA in the nucleus accumbens of morphine- or methamphetamine-dependent rats were significantly increased compared with those in control animals. Since tPA plays a role in synaptic plasticity, we hypothesized that tPA may contribute to the development of drug dependence. Single and repeated morphine treatment as well as repeated methamphetamine treatment induced tPA mRNA expression in the nucleus accumbens, which was associated with an increase in the enzyme activity. Conditioned place preference induced by morphine was markedly reduced in mice with a targeted deletion of the tPA gene (tPA-/- mice), being accompanied by a loss of morphine-induced dopamine release. Similarly, methamphetamine-induced conditioned place preference and locomotor sensitization were reduced in tPA-/- mice. The defects of morphine-induced hyperlocomotion as well as methamphetamine-induced locomotor sensitization in tPA-/- mice were reversed by microinjection of exogenous tPA or plasmin into the nucleus accumbens. These results support our hypothesis that tPA plays a role in long-lasting neuronal changes related to drug dependence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue-Type Plasminogen Activator: A Multifaceted Modulator of Neurotransmission and Synaptic Plasticity

For over a decade, tissue-type plasminogen activator (t-PA), a serine protease classically known for its profibrinolytic role in the vasculature, has been implicated in numerous aspects of the synaptic plasticity process. But despite being the most intensively studied protease of the CNS, the mechanisms and molecular mediators behind the action of t-PA on synaptic efficacy remain largely undefi...

متن کامل

Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice.

Adult cortical neurons can produce tissue-type plasminogen activator (tPA), an extracellular protease that plays a critical role in fibrinolysis and tissue remodelling processes. There is growing evidence that extracellular proteolysis may be involved in synaptic plasticity, axonal remodelling and neurotoxicity in the adult central nervous system. Here we show that transgenic mice overexpressin...

متن کامل

Optimizing refolding condition for recombinant tissue plasminogen activator

Low molecular size additives such as L-arginine and the redox compounds have been used both in the culturemedium and in vitro refolding to increase recombinant proteins production. Additives increase proteinrefolding and yield of active proteins by suppressing aggregate formation or enhancing refolding process.In this work, a comparative study was performed on refolding of rec...

متن کامل

Dual frequency ultrasound-enhanced tissue plasminogen activator thrombolysis in an in vitro human clot model

Introduction: Stroke causes death and disability in patients throughout the world. At present, the only FDA- approved drug for ischemic stroke is recombinant tissue plasminogen activator (rt- PA). Unfortunately, rtPA can cause intracerebral hemorrhage and must use within limited time window (within 3-4.5 hour after onset of stroke). Ultrasound with rtPA loaded liposomes (rtPA_L...

متن کامل

Regulation of the Activity of Tissue Plasminogen Activator and Plasminogen Activator Inhibitor-1 by Zinc in Rat Primary Astrocytes

Tissue-type plasminogen activator (tPA) is a serine proteinase which plays important roles in functional and structural synaptic plasticity, neural migration, as well as excitotoxic injuries in several pathological situations including ischemic stroke, seizure and Alzheimer’s disease (AD). It has been suggested that a divalent cation zinc also plays pathological roles in ischemia and seizure. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of pharmacological sciences

دوره 97 2  شماره 

صفحات  -

تاریخ انتشار 2005