Quadratic cone cutting surfaces for quadratic programs with on-off constraints

نویسندگان

  • Hyemin Jeon
  • Jeff T. Linderoth
  • Andrew Miller
چکیده

We study the convex hull of a set arising as a relaxation of difficult convex mixed integer quadratic programs (MIQP). We characterize the extreme points of our set and the extreme points of its continuous relaxation. We derive four quadratic cutting surfaces that improve the strength of the continuous relaxation. Each of the cutting surfaces is second-order-cone representable. Via a shooting experiment, we provide empirical evidence as to the importance of each inequality type in improving the relaxation. Computational results that employ the new cutting surfaces to strengthen the relaxation for MIQPs arising from portfolio optimization applications are promising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving A Fractional Program with Second Order Cone Constraint

We consider a fractional program with both linear and quadratic equation in numerator and denominator  having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a  second order cone programming (SOCP)  problem.  For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...

متن کامل

On Reformulations of Nonconvex Quadratic Programs over Convex Cones by Set-semidefinite Constraints

The well-known result stating that any non-convex quadratic problem over the nonnegative orthant with some additional linear and binary constraints can be rewritten as linear problem over the cone of completely positive matrices (Burer, 2009) is generalized by replacing the nonnegative orthant with an arbitrary closed convex cone. This set-semidefinite representation result implies new semidefi...

متن کامل

Convex quadratic relaxations of nonconvex quadratically constrained quadratic programs

Nonconvex quadratic constraints can be linearized to obtain relaxations in a wellunderstood manner. We propose to tighten the relaxation by using second order cone constraints, resulting in a convex quadratic relaxation. Our quadratic approximation to the bilinear term is compared to the linear McCormick bounds. The second order cone constraints are based on linear combinations of pairs of vari...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Quadratic factorization heuristics for copositive programming

Copositive optimization problems are particular conic programs: extremize linear forms over the copositive cone subject to linear constraints. Every quadratic program with linear constraints can be formulated as a copositive program, even if some of the variables are binary. So this is an NP-hard problem class. While most methods try to approximate the copositive cone from within, we propose a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Optimization

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017