Adjuvant-Mediated Epitope Specificity and Enhanced Neutralizing Activity of Antibodies Targeting Dengue Virus Envelope Protein
نویسندگان
چکیده
The heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB) in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV) envelope glycoprotein domain III (EDIII), which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.
منابع مشابه
A mouse monoclonal antibody against dengue virus type 1 Mochizuki strain targeting envelope protein domain II and displaying strongly neutralizing but not enhancing activity.
Dengue fever and its more severe form, dengue hemorrhagic fever, are major global concerns. Infection-enhancing antibodies are major factors hypothetically contributing to increased disease severity. In this study, we generated 26 monoclonal antibodies (MAbs) against the dengue virus type 1 Mochizuki strain. We selected this strain because a relatively large number of unique and rare amino acid...
متن کاملNeutralizing Antibody Response and Efficacy of Novel Recombinant Tetravalent Dengue DNA Vaccine Comprising Envelope Domain III in Mice
Background: Dengue is a global arboviral threat to humans; causing 390 million infections per year. The availability of safe and effective tetravalent dengue vaccine is a global requirement to prevent epidemics, morbidity, and mortality associated with it. Methods: Five experimental groups (6 mice per group) each of 5-week-old BALB/c mice were immunized with vaccine and placebo (empty plasmid) ...
متن کاملGeneration of Monoclonal Antibodies against Dengue Virus Type 4 and Identification of Enhancing Epitopes on Envelope Protein
The four serotypes of dengue virus (DENV1-4) pose a serious threat to global health. Cross-reactive and non-neutralizing antibodies enhance viral infection, thereby exacerbating the disease via antibody-dependent enhancement (ADE). Studying the epitopes targeted by these enhancing antibodies would improve the immune responses against DENV infection. In order to investigate the roles of antibodi...
متن کاملA New Quaternary Structure Epitope on Dengue Virus Serotype 2 Is the Target of Durable Type-Specific Neutralizing Antibodies
UNLABELLED Dengue virus serotype 2 (DENV2) is widespread and responsible for severe epidemics. While primary DENV2 infections stimulate serotype-specific protective responses, a leading vaccine failed to induce a similar protective response. Using human monoclonal antibodies (hMAbs) isolated from dengue cases and structure-guided design of a chimeric DENV, here we describe the major site on the...
متن کاملCovalently linked dengue virus envelope glycoprotein dimers reduce exposure of the immunodominant fusion loop epitope
A problem in the search for an efficient vaccine against dengue virus is the immunodominance of the fusion loop epitope (FLE), a segment of the envelope protein E that is buried at the interface of the E dimers coating mature viral particles. Anti-FLE antibodies are broadly cross-reactive but poorly neutralizing, displaying a strong infection enhancing potential. FLE exposure takes place via dy...
متن کامل