Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam
نویسندگان
چکیده
In this work, we proposed to utilize three-dimensional porous copper foam (CF) as conductive substrate and precursor of in-situ growth CuO nanowires (NWs) for fabricating electrochemical nonenzymatic glucose sensors. The CF supplied high surface area due to its unique three-dimensional porous foam structure, and thus resulted in high sensitivity for glucose detection. The CuO NWs/CF based nonenzymatic sensors presented reliable selectivity, good repeatability, reproducibility, and stability. In addition, the CuO NWs/CF based nonenzymatic sensors have been employed for practical applications, and the glucose concentration in human serum was measured to be 4.96 ± 0.06 mM, agreed well with the value measured from the commercial available glucose sensor in hospital, and the glucose concentration in saliva was also estimated to be 0.91 ± 0.04 mM, which indicated that the CuO NWs/CF owned the possibility for noninvasive glucose detection. The rational design of CuO NWs/CF provided an efficient strategy for fabricating of electrochemical nonenzymatic biosensors.
منابع مشابه
Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning
Three-dimensional (3D) porous ZnO-CuO hierarchical nanocomposites (HNCs) nonenzymatic glucose electrodes with different thicknesses were fabricated by coelectrospinning and compared with 3D mixed ZnO/CuO nanowires (NWs) and pure CuO NWs electrodes. The structural characterization revealed that the ZnO-CuO HNCs were composed of the ZnO and CuO mixed NWs trunk (~200 nm), whose outer surface was a...
متن کاملCuO Nanowires-based Electrodes for Glucose Sensors
A three electrodes planar electrochemical sensor, based on CuO nanowires growth “in situ” on Cu working electrode, was fabricated by a simple micromachining technique and employed for the non-enzymatic determination of glucose. The microstructural and morphological characteristics of the modified electrode was investigated by XRD and SEM analysis. Cyclic voltammetry and chronoamperometric measu...
متن کاملFlexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled.
Convenient determination of glucose in a sensitive, reliable and cost-effective way has aroused sustained research passion, bringing along assiduous investigation of high-performance electroactive nanomaterials to build enzymeless sensors. In addition to the intrinsic electrocatalytic capability of the sensing materials, electrode architecture at the microscale is also crucial for fully enhanci...
متن کاملHollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors.
Hollow CuO nanospheres have been prepared via a reduction reaction of copper ions on porous Si nanowires combined with calcination in air and uniformly anchored on their surfaces. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize and analyze as-synthesized samples. The results reveal that Si nanowi...
متن کاملSpherulitic copper–copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor
In this work, three different spherulitic nanostructures Cu-CuOA, Cu-CuOB, and Cu-CuOC were synthesized in water-in-oil microemulsions by varying the surfactant concentration (30 mM, 40 mM, and 50 mM, respectively). The structural and morphological characteristics of the Cu-CuO nanostructures were investigated by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, scanning electron mi...
متن کامل