ELLIPTIC CURVES OVER Q(i)

نویسندگان

  • Thotsaphon Thongjunthug
  • Peter G. Brown
چکیده

A study of the diophantine equation v2 = 2u4 − 1 led the authors to consider elliptic curves specifically over Q(i) and to examine the parallels and differences with the classical theory over Q. In this paper we present some extensions of the classical theory along with some examples illustrating the results. The well-known diophantine equation v2 = 2u4 − 1 , has, ignoring signs, only two integer solutions, namely (u, v) = (1, 1) and (13, 239). This is not an easy result to prove (e.g. see [1]). The change of variable x = 2iv − 2 u2 , y = −4(v + i) u3 , transforms this equation into the elliptic curve y2 = x3 + 8x . The two integer solutions are transformed as follows: (1, 1) → (−2 + 2i,−4− 4i), (13, 239) → ( 2(−1 + 239i) 132 , −4(239 + i) 133 ) . Thus integer solutions to the diophantine equation become Gaussian rational points on the elliptic curve. This observation motivated us to look at elliptic curves specifically over Q(i) to examine the parallels and differences with the classical theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves

Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

On Silverman's conjecture for a family of elliptic curves

Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...

متن کامل

On the Elliptic Curves of the Form $y^2 = x^3 − pqx$

‎By the Mordell‎- ‎Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves‎, ‎where p and q are distinct primes‎. ‎We give infinite families of elliptic curves of the form y2=x3-pqx with rank two‎, ‎three and four‎, ‎assuming a conjecture of Schinzel ...

متن کامل

Complete classification of torsion of elliptic curves over quadratic cyclotomic fields

In a previous paper ([10]), the author examined the possible torsions of an elliptic curve over the quadratic fields Q(i) and Q( √ −3). Although all the possible torsions were found if the elliptic curve has rational coefficients, we were unable to eliminate some possibilities for the torsion if the elliptic curve has coefficients that are not rational. In this note, by finding all the points o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006