Spatial Distribution of Attentional Modulation at Columnar Resolution in Macaque Area V4
نویسندگان
چکیده
Attention to a location in a visual scene affects neuronal responses in visual cortical areas in a retinotopically specific manner. Optical imaging studies have revealed that cortical responses consist of two components of different sizes: the stimulus-nonspecific global signal and the stimulus-specific mapping signal (domain activity). It remains unclear whether either or both of these components are modulated by spatial attention. In this study, to determine the spatial distribution of attentional modulation at columnar resolution, we performed cerebral blood volume (CBV)-based optical imaging in area V4 of monkeys performing a color change detection task in which spatial attention was manipulated. We found that spatial attention enhanced global signals of the hemodynamic responses, but did not affect stimulus-selective domain activities. These results indicate the involvement of global signals in neural processing of spatial attention. We propose that global signals reflect the neural substrate of the normalization pool in normalization models of attention.
منابع مشابه
Spatial attention effects in macaque area V4.
Focal visual attention typically produces enhanced perceptual processing at the psychological level and relatively stronger neural responses at the physiological level. A longstanding mechanistic question is whether these attentional effects pertain specifically to the attended (target) object or to the region of space it occupies. We show here that attentional response enhancement in macaque a...
متن کاملAttentional modulation of firing rate varies with burstiness across putative pyramidal neurons in macaque visual area V4.
One of the most well established forms of attentional modulation is an increase in firing rate when attention is directed into the receptive field of a neuron. The degree of rate modulation, however, can vary considerably across individual neurons, especially among broad spiking neurons (putative pyramids). We asked whether this heterogeneity might be correlated with a neuronal response propert...
متن کاملTopographic organization in and near human visual area V4.
The existence and location of a human counterpart of macaque visual area V4 are disputed. To resolve this issue, we used functional magnetic resonance imaging to obtain topographic maps from human subjects, using visual stimuli and tasks designed to maximize accuracy of topographic maps of the fovea and parafovea and to measure the effects of attention on topographic maps. We identified multipl...
متن کاملDifferential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4
The cortex contains multiple cell types, but studies of attention have not distinguished between them, limiting understanding of the local circuits that transform attentional feedback into improved visual processing. Parvalbumin-expressing inhibitory interneurons can be distinguished from pyramidal neurons based on their briefer action potential durations. We recorded neurons in area V4 as monk...
متن کاملReceptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation.
Selective attention is the top-down mechanism to allocate neuronal processing resources to the most relevant subset of the information provided by an organism's sensors. Attentional selection of a spatial location modulates the spatial-tuning characteristics (i.e., the receptive fields of neurons in macaque visual cortex). These tuning changes include a shift of receptive field centers toward t...
متن کامل