Perturbations of Banach Frames and Atomic Decompositions

نویسنده

  • Christopher Heil
چکیده

Banach frames and atomic decompositions are sequences that have basis-like properties but which need not be bases. In particular, they allow elements of a Banach space to be written as linear combinations of the frame or atomic decomposition elements in a stable manner. In this paper we prove several functional-analytic properties of these decompositions, and show how these properties apply to Gabor and wavelet systems. We first prove that frames and atomic decompositions are stable under small perturbations. This is inspired by corresponding classical perturbation results for bases, including the Paley–Wiener basis stability criteria and the perturbation theorem of Kato. We introduce new and weaker conditions which ensure the desired stability. We then prove duality properties of atomic decompositions and consider some consequences for Hilbert frames. Finally, we demonstrate how our results apply in the practical case of Gabor systems in weighted L spaces. Such systems can form atomic decompositions for L w (IR), but cannot form Hilbert frames for L w (IR) unless the weight is trivial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Banach Pair Frames

In this article, we consider pair frames in Banach spaces and   introduce Banach pair frames. Some various concepts in the frame theory such as frames, Schauder frames, Banach frames and atomic decompositions are considered as   special kinds of (Banach) pair frames.  Some frame-like inequalities  for (Banach)  pair frames are presented. The elements that participant  in the construction of (Ba...

متن کامل

Banach frames in coorbit spaces consisting of elements which are invariant under symmetry groups

This paper is concerned with the construction of atomic decompositions and Banach frames for subspaces of certain Banach spaces consisting of elements which are invariant under some symmetry group. These Banach spaces – called coorbit spaces – are related to an integrable group representation. The construction is established via a generalization of the well-established Feichtinger-Gröchenig the...

متن کامل

On an atomic decomposition in Banach spaces

An atomic decomposition is considered in Banach space.  A method for constructing an atomic decomposition of Banach  space, starting with atomic decomposition of  subspaces  is presented. Some relations between them are established. The proposed method is used in the  study  of the  frame  properties of systems of eigenfunctions and associated functions of discontinuous differential operators.

متن کامل

Perturbation of frames in Banach spaces

In this paper we consider perturbation of Xd-Bessel sequences, Xdframes, Banach frames, atomic decompositions and Xd-Riesz bases in separable Banach spaces. Equivalence between some perturbation conditions is investigated.

متن کامل

Invariance of Fréchet frames under perturbation

Motivating the perturbations of frames in Hilbert and Banach spaces, in this paper we introduce the invariance of Fr'echet frames under perturbation. Also we show that for any Fr'echet spaces, there is a Fr'echet frame and any element in these spaces  has a series expansion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994