A Study on Non-Correspondence in Spread between Objective Space and Design Variable Space in Pareto Solutions

نویسندگان

  • Tomohiro Yoshikawa
  • Toru Yoshida
چکیده

Recently, a lot of studies on Multi-Objective Genetic Algorithm (MOGA), in which Genetic Algorithm is applied to Multi-objective Optimization Problems (MOPs), have been reported actively. MOGA has been also applied to engineering design fields, then it is important not only to obtain Pareto solutions having high performance but also to analyze the obtained Pareto solutions and extract the knowledge in the designing problem. In order to analyze Pareto solutions obtained by MOGA, it is required to consider both the objective space and the design variable space. In this paper, we define“Non-Correspondence in Spread”between the objective space and the design variable space. We also try to extract Non-Correspondence area in Spread with the index defined in this paper. This paper applies the proposed method to the trajectory designing optimization problem and extracts Non-Correspondence area in Spread in the acquired Pareto solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A study on Non-Correspondence in Spread between Objective Space and Design Variable Space and Application to Genetic Search

Recently, a lot of studies on Multi-Objective Genetic Algorithm (MOGA), in which Genetic Algorithm is applied to Multi-objective Optimization Problems (MOPs), have been reported actively. MOGA has been also applied to engineering design fields, then it is important not only to obtain high-performance Pareto solutions but also to analyze the obtained Pareto solutions and extract some knowledge i...

متن کامل

Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms

In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced‎. ‎In this approach‎, ‎first a discretized form of the time-control space is considered and then‎, ‎a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...

متن کامل

Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm

Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...

متن کامل

Urban Land-Use Allocation By A Cell-based Multi-Objective Optimization Algorithm

Allocating urban land-uses to land-units with regard to different criteria and constraints is considered as a spatial multi-objective problem. Generating various urban land-use layouts with respect to defined objectives for urban land-use allocation can support urban planners in confirming appropriate layouts. Hence, in this research, a multi-objective optimization algorithm based on grid is pr...

متن کامل

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014