Aneuploid colon cancer cells have a robust spindle checkpoint.

نویسندگان

  • A Tighe
  • V L Johnson
  • M Albertella
  • S S Taylor
چکیده

Colon cancer cells frequently display minisatellite instability (MIN) or chromosome instability (CIN). While MIN is caused by mismatch repair defects, the lesions responsible for CIN are unknown. The observation that CIN cells fail to undergo mitotic arrest following spindle damage suggested that mutations in spindle checkpoint genes may account for CIN. However, here we show that CIN cells do undergo mitotic arrest in response to spindle damage. Although the maximum mitotic index achieved by CIN lines is diminished relative to MIN lines, CIN cells clearly have a robust spindle checkpoint. Consistently, mutations in spindle checkpoint genes are rare in human tumours. In contrast, the adenomatous polyposis coli (APC) gene is frequently mutated in CIN cells. Significantly, we show here that expression of an APC mutant in MIN cells reduces the mitotic index following spindle damage to a level observed in CIN cells, suggesting that APC dysfunction may contribute to CIN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncating APC mutations have dominant effects on proliferation, spindle checkpoint control, survival and chromosome stability.

The majority of human tumour cells are aneuploid owing to an underlying chromosome instability phenotype. While the genetic lesions that cause chromosome instability remain undefined, mouse ES cells harbouring homozygous adenomatous polyposis coli (APC) mutations are frequently tetraploid. In addition, colon cancer cells with APC mutations have weakened kinetochore-microtubule interactions. Fur...

متن کامل

p14(ARF) Prevents Proliferation of Aneuploid Cells by Inducing p53-Dependent Apoptosis.

Weakening the Spindle Assembly Checkpoint by reduced expression of its components induces chromosome instability and aneuploidy that are hallmarks of cancer cells. The tumor suppressor p14(ARF) is overexpressed in response to oncogenic stimuli to stabilize p53 halting cell progression. Previously, we found that lack or reduced expression of p14(ARF) is involved in the maintenance of aneuploid c...

متن کامل

Stable aneuploid tumors cells are more sensitive to TTK inhibition than chromosomally unstable cell lines

Inhibition of the spindle assembly checkpoint kinase TTK causes chromosome mis-segregation and tumor cell death. However, high levels of TTK correlate with chromosomal instability (CIN), which can lead to aneuploidy. We show that treatment of tumor cells with the selective small molecule TTK inhibitor NTRC 0066-0 overrides the mitotic checkpoint, irrespective of cell line sensitivity. In stable...

متن کامل

Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death.

Disrupted passage through mitosis often leads to chromosome missegregation and the production of aneuploid progeny. Aneuploidy has long been recognized as a frequent characteristic of cancer cells and a possible cause of tumorigenesis. Drugs that target mitotic spindle assembly are frequently used to treat various types of human tumors. These lead to chronic mitotic arrest from sustained activa...

متن کامل

Losing odd chromosomes

Losing odd chromosomes C ancer cells need a little something extra to propagate with unusual chromosome numbers, based on evidence from Thompson and Compton. Many tumors are packed with cells that have too many or too few chromosomes—a state known as aneuploidy. In theory, aneuploidy is the result of chromosome segregation errors during mitosis. The authors now identify one mechanism behind the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EMBO reports

دوره 2 7  شماره 

صفحات  -

تاریخ انتشار 2001