Examining the Role of Effective Population Size on Mitochondrial and Multilocus Divergence Time Discordance in a Songbird
نویسندگان
چکیده
Estimates of speciation times are subject to a number of potential errors. One source of bias is that effective population size (Ne) has been shown to influence substitution rates. This issue is of particular interest for phylogeographic studies because population sizes can vary dramatically among genetically structured populations across species' ranges. In this study, we used multilocus data to examine temporal phylogeographic patterns in a widespread North American songbird, the Northern Cardinal (Cardinalis cardinalis). Species tree estimation indicated that the phylogeographic structure of C. cardinalis was comprised of four well-supported mainland lineages with large population sizes (large Ne) and two island lineages comprised of much smaller populations (small Ne). We inferred speciation times from mtDNA and multilocus data and found there was discordance between events that represented island-mainland divergences, whereas both estimates were similar for divergences among mainland lineages. We performed coalescent simulations and found that the difference in speciation times could be attributed to stochasticity for a recently diverged island lineage. However, the magnitude of the change between speciation times estimated from mtDNA and multilocus data of an older island lineage was substantially greater than predicted by coalescent simulations. For this divergence, we found the discordance in time estimates was due to a substantial increase in the mtDNA substitution rate in the small island population. These findings indicate that in phylogeographic studies the relative tempo of evolution between mtDNA and nuclear DNA can become highly discordant in small populations.
منابع مشابه
Evaluating summary statistics used to test for incomplete lineage sorting: mito-nuclear discordance in the reef sponge Callyspongia vaginalis.
Conflicting patterns of population differentiation between the mitochondrial and nuclear genomes (mito-nuclear discordance) have become increasingly evident as multilocus data sets have become easier to generate. Incomplete lineage sorting (ILS) of nucDNA is often implicated as the cause of such discordance, stemming from the large effective population size of nucDNA relative to mtDNA. However,...
متن کاملAppraisal of the entire mitochondrial genome for DNA barcoding in birds
DNA barcoding based on a standardized region of 648 base pairs of mitochondrial DNAsequences from Cytochrome C Oxidase 1 (COX1) is proposed for animal species identification.Recent studies suggested that DNA barcoding has been effective for identifying 94% of birdspecies. The proposed threshold of 10 times the average intraspecific variation could be used forthe identification and delimitation ...
متن کاملMitochondrial Diversity and Phylogenetic Structure of Marghoz Goat Population
The genetic diversity and phylogenetic structure was analyzed in Marghoz goat population by mitochondrial DNA sequences. Phylogenetic analysis was carried out using hyper variable region 1 (968 bp) obtained form 40 animals. Marghoz goat proved to be extremely diverse (average haplotype diversity of 0.999) and the nucleotide diversity values 0.022. A total of 40 Marghoz goats were grouped into s...
متن کاملEffect of Conservative Reporting on Investors' Opinion Divergence at the Time of Earnings Announcement
This research aims to investigate the effect of conservative reporting on the investors' opinion divergence at the time of earnings announcement in a 5 year period during 2012-2016; the required data have been collected from Tehran Securities and Stock Exchange Organization and the population is consisted of 585 corporates-years which have been selected by the systematic removal sampling. To in...
متن کاملMitochondrial-nuclear interactions maintain a deep mitochondrial split in the face of nuclear gene flow
Proteins encoded by interacting mitochondrial and nuclear genes catalyze essential metabolic processes in eukaryote cells. The correct functioning of such processes requires combinations of mitochondrial and nuclear alleles that work together (mitonuclear interactions) and the avoidance of mismatched combinations (mitonuclear incompatibilities). This interplay could have a major role during the...
متن کامل