Independent components analysis for fetal electrocardiogram extraction: a case for the data efficient Mermaid algorithm
نویسندگان
چکیده
Fetal heart rate (FHR) monitoring is currently the primary methodology for antenatal determination of fetal well-being. Currently, the FHR can be detected with ultrasonography, but the additional information from fetal electrocardiogram (FECG) is only available via an invasive scalp electrode. A cost effective noninvasive monitoring through standard ECG electrodes could be used on nearly every patient in lieu of the ultrasound monitors. In this method, a number of electrodes are positioned on the abdomen of the mother to collect, simultaneously, various combinations of the signals including the heartbeats of the mother and the fetus. For accurate fetal heart-rate estimation, a clean FECG must be extracted from the collected mixtures. It is well known that this can be achieved using blind source separation (BSS) techniques. In this paper, the performance of the Mermaid algorithm, which is based on minimizing Renyi’s mutual information, is evaluated on this problem of great practical importance. The effectiveness and data efficiency of Mermaid and its superiority over alternative information theoretic BSS algorithms are illustrated using artificially mixed ECG signals as well as fetal heart rate estimates in real ECG mixtures.
منابع مشابه
A PCA/ICA based Fetal ECG Extraction from Mother Abdominal Recordings by Means of a Novel Data-driven Approach to Fetal ECG Quality Assessment
Background: Fetal electrocardiography is a developing field that provides valuable information on the fetal health during pregnancy. By early diagnosis and treatment of fetal heart problems, more survival chance is given to the infant.Objective: Here, we extract fetal ECG from maternal abdominal recordings and detect R-peaks in order to recognize fetal heart rate. On the next step, we find a be...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملSensor Array and Electrode Selection for Non-invasive Fetal Electrocardiogram Extraction by Independent Component Analysis
Recently, non-invasive techniques to measure the fetal electrocardiogram (FECG) signal have given very promising results. However, the important question of the number and the location of the external sensors has been often discarded. In this paper, an electrode-array approach is proposed; it is combined with a sensor selection algorithm using a mutual information criterion. The sensor selectio...
متن کاملINTELLIGENT TECHNIQUE OF CANCELING MATERNAL ECG IN FECG EXTRACTION
In this paper, we propose a technique of artificial intelligence called adaptive neuro fuzzy inference system (ANFIS) for canceling maternal electrocardiogram (MECG) in fetal electrocardiogram extraction (FECG).This technique is used to estimate the MECG present in the abdominal signal of a pregnant woman. The FECG is then extracted by subtracting the estimated MECG from the abdominal signal. P...
متن کاملFetal Electrocardiogram Extraction and Performance Analysis
In biomedical engineering, to extract the fetal electrocardiogram (FECG) exactly is a significant and challenging research topic, and so it has been a hot field in biomedical research. Now, a variety of different methods have been proposed to address this problem. From the perspective of blind signal processing, FECG extraction can be modeled as Blind source separation (BSS). In this paper, we ...
متن کامل