Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress.
نویسندگان
چکیده
The receptor for advanced glycation end products (RAGE) may promote diabetic vascular and renal disease through the activation of intracellular signaling pathways that promote oxidative stress. Oxidative stress is a mediator of hyperglycemia-induced cell injury and a unifying theme for all mechanisms of diabetic complications, but there are few studies on the expression and potential contribution of RAGE in diabetic neuropathy. The current study demonstrates that dorsal root ganglia neurons express functional RAGE and respond to the RAGE ligand S100 with similar downstream signaling, oxidative stress, and cellular injury as other diabetic complication-prone tissues. RAGE-induced phosphatidylinositol-3 kinase activity is associated with formation of reactive oxygen species, caspase-3 activation, and nuclear DNA degradation. These events are prevented by treatment with the antioxidant alpha-lipoic acid. Our data indicate that therapies aimed at decreasing RAGE ligands, blocking RAGE signaling, or preventing oxidative stress could significantly decrease the development of neuropathy in diabetic patients.
منابع مشابه
Advanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress
Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...
متن کاملAdvanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance
Advanced glycation end-products are toxic by-products of metabolism and are also acquired from high-temperature processed foods. They promote oxidative damage to proteins, lipids and nucleotides. Aging and chronic diseases are strongly associated with markers for oxidative stress, especially advanced glycation end-products, and resistance to peripheral insulin-mediated glucose uptake. Modifiabl...
متن کاملReceptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity
Parkinson's disease (PD) is a common neurodegenerative disorder of unknown pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Oxidative stress, microglial activation and inflammatory responses seem to contribute to the pathogenesis. The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecu...
متن کاملAdvanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress
Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alzheimer's disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressio...
متن کاملErratum to “Factors Influencing Oxidative Imbalance in Pulmonary Fibrosis: An Immunohistochemical Study”
The authors of the paper would like to apologize for the following errors contained in the original paper. 1. The exact Figure 1 in the original paper has to be corrected as Figure 1 in this paper. 2. References in the original paper have to be corrected by adding the following:vanced glycation end products cause epithelial-my-ofibroblast transdifferentiation via the receptor for advanced glyca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 148 2 شماره
صفحات -
تاریخ انتشار 2007