Rank Aggregation via Low-Rank and Structured-Sparse Decomposition
نویسندگان
چکیده
Rank aggregation, which combines multiple individual rank lists to obtain a better one, is a fundamental technique in various applications such as meta-search and recommendation systems. Most existing rank aggregation methods blindly combine multiple rank lists with possibly considerable noises, which often degrades their performances. In this paper, we propose a new model for robust rank aggregation (RRA) via matrix learning, which recovers a latent rank list from the possibly incomplete and noisy input rank lists. In our model, we construct a pairwise comparison matrix to encode the order information in each input rank list. Based on our observations, each comparison matrix can be naturally decomposed into a shared low-rank matrix, combined with a deviation error matrix which is the sum of a column-sparse matrix and a row-sparse one. The latent rank list can be easily extracted from the learned lowrank matrix. The optimization formulation of RRA has an element-wise multiplication operator to handle missing values, a symmetric constraint on the noise structure, and a factorization trick to restrict the maximum rank of the low-rank matrix. To solve this challenging optimization problem, we propose a novel procedure based on the Augmented Lagrangian Multiplier scheme. We conduct extensive experiments on metasearch and collaborative filtering benchmark datasets. The results show that the proposed RRA has superior performance gain over several state-of-the-art algorithms for rank aggregation.
منابع مشابه
Salient Object Detection via Low-Rank and Structured Sparse Matrix Decomposition
Salient object detection provides an alternative solution to various image semantic understanding tasks such as object recognition, adaptive compression and image retrieval. Recently, low-rank matrix recovery (LR) theory has been introduced into saliency detection, and achieves impressed results. However, the existing LR-based models neglect the underlying structure of images, and inevitably de...
متن کاملFace Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملSparse and Low-Rank Tensor Decomposition
Motivated by the problem of robust factorization of a low-rank tensor, we study the question of sparse and low-rank tensor decomposition. We present an efficient computational algorithm that modifies Leurgans’ algoirthm for tensor factorization. Our method relies on a reduction of the problem to sparse and low-rank matrix decomposition via the notion of tensor contraction. We use well-understoo...
متن کاملSparse and Low-rank Matrix Decomposition via Alternating Direction Methods
The problem of recovering the sparse and low-rank components of a matrix captures a broad spectrum of applications. Authors in [4] proposed the concept of ”rank-sparsity incoherence” to characterize the fundamental identifiability of the recovery, and derived practical sufficient conditions to ensure the high possibility of recovery. This exact recovery is achieved via solving a convex relaxati...
متن کاملSparse + Low Rank Decomposition of Annihilating Filter-based Hankel Matrix for Impulse Noise Removal
Recently, so called annihilating filer-based low rank Hankel matrix (ALOHA) approach was proposed as a powerful image inpainting method. Based on the observation that smoothness or textures within an image patch corresponds to sparse spectral components in the frequency domain, ALOHA exploits the existence of annihilating filters and the associated rank-deficient Hankel matrices in the image do...
متن کامل