Lack of depolarization-induced suppression of inhibition (DSI) in layer 2/3 interneurons that receive cannabinoid-sensitive inhibitory inputs.
نویسندگان
چکیده
In layer 2/3 of neocortex, brief trains of action potentials in pyramidal neurons (PNs) induce the mobilization of endogenous cannabinoids (eCBs), resulting in a depression of GABA release from the terminals of inhibitory interneurons (INs). This depolarization-induced suppression of inhibition (DSI) is mediated by activation of the type 1 cannabinoid receptor (CB1) on presynaptic terminals of a subset of INs. However, it is not clear whether CB1 receptors are also expressed at synapses between INs, and whether INs can release eCBs in response to depolarization. In the present studies, brain slices containing somatosensory cortex were prepared from 14- to 21-day-old CD-1 mice. Whole cell recordings were obtained from layer 2/3 PNs and from INs classified as regular spiking nonpyramidal, irregular spiking, or fast spiking. For all three classes of INs, the cannabinoid agonist WIN55,212-2 suppressed inhibitory synaptic activity, similar to the effect seen in PNs. In addition, trains of action potentials in PNs resulted in significant DSI. In INs, however, DSI was not seen in any cell type, even with prolonged high-frequency spike trains that produced calcium increases comparable to that seen with DSI induction in PNs. In addition, blocking eCB reuptake with AM404, which enhanced DSI in PNs, failed to unmask any DSI in INs. Thus the lack of DSI in INs does not appear to be due to an insufficient increase in intracellular calcium or enhanced reuptake. These results suggest that layer 2/3 INs receive CB1-expressing inhibitory inputs, but that eCBs are not released by these INs.
منابع مشابه
Cell - type specific regulation of inhibition via cannabinoid type 1 receptors in rat 1 neocortex
27 Endogenous cannabinoid type-1 (CB1) receptors demonstrate a cell-type specific expression and are 28 potent modulators of synaptic transmission within the CNS. We aimed to investigate whether two 29 classes of multipolar interneuron in the neocortex displayed a form of short-term synaptic plasticity 30 – depolarization induced suppression of inhibition (DSI), and whether the DSI was mediated...
متن کاملEndocannabinoids Mediate Rapid Retrograde Signaling At Interneuron 3 Pyramidal Neuron Synapses of the Neocortex
Trettel, Joseph and Eric S. Levine. Endocannabinoids mediate rapid retrograde signaling at interneuron 3 pyramidal neuron synapses of the neocortex. J Neurophysiol 89: 2334–2338, 2003; 10.1152/jn.01037.2002. In the neocortex, inhibitory interneurons tightly regulate the firing patterns and integrative properties of pyramidal neurons (PNs). The endocannabinoid system of the neocortex may play an...
متن کاملCell type-specific regulation of inhibition via cannabinoid type 1 receptors in rat neocortex.
Endogenous cannabinoid type 1 (CB1) receptors demonstrate a cell type-specific expression and are potent modulators of synaptic transmission within the central nervous system. We aimed to investigate whether two classes of multipolar interneuron in the neocortex displayed a form of short-term synaptic plasticity, depolarization-induced suppression of inhibition (DSI), and whether the DSI was me...
متن کاملThe cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells.
Action potential firing or depolarization of the postsynaptic neuron can induce a transient suppression of inhibitory synaptic inputs to the depolarized neuron in the cerebellum and hippocampus. This phenomenon, termed depolarization-induced suppression of inhibition (DSI), is initiated postsynaptically by an elevation of intracellular Ca2+ concentration ([Ca2+]i) and is expressed presynaptical...
متن کاملCerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids.
Depolarization of cerebellar Purkinje neurons transiently suppresses IPSCs through a process known as depolarization-induced suppression of inhibition (DSI). This IPSC suppression occurs presynaptically and results from an unknown retrograde signal released from Purkinje cells. We recorded IPSCs from voltage-clamped Purkinje cells in cerebellar brain slices to identify the retrograde signal for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 98 5 شماره
صفحات -
تاریخ انتشار 2007