Projection Pursuit Density Estimation

نویسندگان

  • Jerome H. Friedman
  • Werner Stuetzle
  • Anne Schroeder
چکیده

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

A Note on Projection Pursuit

I provide a historic review of the forward and backward projection pursuit algorithms, previously thought to be equivalent, and point out an important difference between the two. In doing so, I correct a small error in the original exploratory projection pursuit paper (Friedman 1987). The implication of the difference is briefly discussed in the context of an application in which projection pur...

متن کامل

On the Forward and Backward Algorithms of Projection Pursuit1 by Mu Zhu

This article provides a historic review of the forward and backward projection pursuit algorithms, previously thought to be equivalent, and points out an important difference between the two. In doing so, a small error in the original exploratory projection pursuit article by Friedman [J. Amer. Statist. Assoc. 82 (1987) 249–266] is corrected. The implication of the difference is briefly discuss...

متن کامل

Efficient Parametric Projection Pursuit Density Estimation

Product models of low dimensional experts are a powerful way to avoid the curse of dimensionality. We present the "under­ complete product of experts" (UPoE), where each expert models a one dimensional pro­ jection of the data. The UPoE may be inter­ preted as a parametric probabilistic model for projection pursuit. Its ML learning rules are identical to the approximate learning rules proposed ...

متن کامل

Projection Pursuit Multivariate Transform

Transforming complex multivariate geological data to be multivariate Gaussian is an important and challenging problem in geostatistics. A variety of transforms are available to accomplish this goal, but may struggle with data sets of high dimensional and sample sizes. Projection Pursuit Density Estimation (PPDE) is a well-established non-parametric method for estimating the joint PDF of multiva...

متن کامل

Gaussianization

High dimensional data modeling is difficult mainly because the so-called "curse of dimensionality". We propose a technique called "Gaussianization" for high dimensional density estimation, which alleviates the curse of dimensionality by exploiting the independence structures in the data. Gaussianization is motivated from recent developments in the statistics literature: projection pursuit, inde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1984