Unsupervised Morpheme Analysis Evaluation by IR experiments - Morpho Challenge 2008

نویسندگان

  • Mikko Kurimo
  • Ville T. Turunen
چکیده

This paper presents the evaluation and results of Competition 2 (information retrieval experiments) in the Morpho Challenge 2008. Competition 1 (a comparison to linguistic gold standard) is described in a companion paper. In Morpho Challenge 2008 the goal was to search and evaluate unsupervised machine learning algorithms that provide morpheme analysis for words in different languages. The morpheme analysis can be important in several applications, where a large vocabulary is needed. Especially in morphologically complex languages, such as Finnish, Turkish and Arabic, the agglutination, inflection, and compounding easily produces millions of different word forms which is clearly too much for building an effective vocabulary and training probabilistic models for the relations between words. The benefits of successful morpheme analysis can be seen, for example, in speech recognition, information retrieval, and machine translation. In Morpho Challenge 2008 the morpheme analysis submitted by the Challenge participants were evaluated by performing information retrieval experiments, where the words in the documents and queries were replaced by their proposed morpheme representations and the search was based on morphemes instead of words. The results indicate that the morpheme analysis has a significant effect in IR performance in all tested languages (Finnish, English and German). The best unsupervised and language-independent morpheme analysis methods can also rival the best language-dependent word normalization methods. The Morpho Challenge was part of the EU Network of Excellence PASCAL Challenge Program and organized in collaboration with CLEF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Morpheme Analysis Evaluation by IR experiments - Morpho Challenge 2007

This paper presents the evaluation of Morpho Challenge Competition 2 (information retrieval). The Competition 1 (linguistic gold standard) is described in a companion paper. In Morpho Challenge 2007, the objective was to design statistical machine learning algorithms that discover which morphemes (smallest individually meaningful units of language) words consist of. Ideally, these are basic voc...

متن کامل

Overview of Morpho Challenge in CLEF 2007

Morpho Challenge 2007 contained an evaluation of unsupervised morpheme analysis algorithms using information retrieval experiments utilizing data available in CLEF. The objective of the challenge was to design statistical machine learning algorithms that discover which morphemes (smallest individually meaningful units of language) words consist of. Ideally, these are basic vocabulary units suit...

متن کامل

Unsupervised Morpheme Analysis Evaluation by a Comparison to a Linguistic Gold Standard - Morpho Challenge 2008

The goal of Morpho Challenge 2008 was to find and evaluate unsupervised algorithms that provide morpheme analyses for words in different languages. Especially in morphologically complex languages, such as Finnish, Turkish and Arabic, morpheme analysis is important for lexical modeling of words in speech recognition, information retrieval and machine translation. The evaluation in Morpho Challen...

متن کامل

Unsupervised Morpheme Analysis Evaluation by a Comparison to a Linguistic Gold Standard - Morpho Challenge 2007

This paper presents the evaluation of Morpho Challenge Competition 1 (linguistic gold standard). The Competition 2 (information retrieval) is described in a companion paper. In Morpho Challenge 2007, the objective was to design statistical machine learning algorithms that discover which morphemes (smallest individually meaningful units of language) words consist of. Ideally, these are basic voc...

متن کامل

Evaluating an Agglutinative Segmentation Model for ParaMor

This paper describes and evaluates a modification to the segmentation model used in the unsupervised morphology induction system, ParaMor. Our improved segmentation model permits multiple morpheme boundaries in a single word. To prepare ParaMor to effectively apply the new agglutinative segmentation model, two heuristics improve ParaMor’s precision. These precision-enhancing heuristics are adap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008