Neurobiology of Disease Genetic Enhancement of Thalamocortical Network Activity by Elevating 1G-Mediated Low-Voltage-Activated Calcium Current Induces Pure Absence Epilepsy
نویسندگان
چکیده
Absence seizures are a leading form of childhood epilepsy. Human and mouse P/Q-type calcium channel gene mutations initiate a complex absence epilepsy and ataxia phenotype, and in mice, secondarily elevate neuronal low-voltage-activated T-type calcium currents. These currents influence thalamocortical network activity and contribute to the generation of cortical spike-wave discharges (SWDs) associated with absence seizures. To address whether enhanced thalamocortical T-type currents suffice to induce an epileptic phenotype, two BAC transgenic mouse lines overexpressing the Cacna1g gene for 1G T-type calcium channels were generated with low and high transgene copy numbers that exhibit elevated 1G expression and showed increased functional T-type currents measured in thalamic neurons. Both lines exhibit frequent bilateral cortical SWDs associated with behavioral arrest but lack other overt neurological abnormalities. These models provide the first evidence that primary elevation of brain T-type currents are causally related to pure absence epilepsy, and selectively identify Cacna1g, one of the three T-type calcium channel genes, as a key component of a genetically complex epileptogenic pathway.
منابع مشابه
مروری بر صرع کوچک با رویکرد به علوم پایه
Abstract Background: Epilepsy is one of the most common neurological disorders. Seizures could be presented as general or focal attacks. Absence epilepsy is one of the main forms of the general epilepsy and associated with sudden impairment of consciousness and non/convulsive generalized attacks. The prevalence of absence epilepsy was estimated about 10% of all types of seizures and seizures o...
متن کاملSelective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy.
The properties of voltage-dependent calcium currents were compared in thalamic neurons acutely dissociated from a rat model of absence epilepsy, designated as Genetic Absence Epilepsy Rat from Strasbourg (GAERS), and from a Nonepileptic Control strain (NEC). Two populations of neurons were isolated: thalamocortical relay neurons of the nucleus ventrobasalis (VB) and neurons of the nucleus retic...
متن کاملNeurobiology of Disease Impaired Feedforward Inhibition of the Thalamocortical Projection in Epileptic Ca Channel Mutant Mice, tottering
The tottering (tg) mice have a mutation in the CaV2.1 (P/Q-type) voltage-dependent Ca 2 channel 12.1 subunit gene. tg mice show not only cerebellar ataxia but also absence epilepsy, which begins at 3 weeks of age and persists throughout life. Similarities in EEG and sensitivity to antiepileptic drugs suggest that tg mice are a good model for human absence epilepsy. Although imbalance between ex...
متن کاملIt Takes T to Tango
Of three recently cloned T-type voltage-gated calcium channels, alpha(1g) is most likely responsible for burst firing in thalamic relay cells. These neurons burst during various thalamocortical oscillations including absence seizures. In this issue of Neuron, Kim et al. inactivated alpha(1g), and resultant mice were deficient in relay cell bursting and resistant to GABA(B) receptor-dependent ab...
متن کاملMolecular physiology of low-voltage-activated t-type calcium channels.
T-type Ca2+ channels were originally called low-voltage-activated (LVA) channels because they can be activated by small depolarizations of the plasma membrane. In many neurons Ca2+ influx through LVA channels triggers low-threshold spikes, which in turn triggers a burst of action potentials mediated by Na+ channels. Burst firing is thought to play an important role in the synchronized activity ...
متن کامل