Region-based saliency estimation for 3D shape analysis and understanding

نویسندگان

  • Yitian Zhao
  • Yonghuai Liu
  • Yongjun Wang
  • Baogang Wei
  • Jian Yang
  • Yifan Zhao
  • Yongtian Wang
چکیده

The detection of salient regions is an important pre-processing step for many 3D shape analysis and understanding tasks. This paper proposes a novel method for saliency detection in 3D free form shapes. Firstly, we smooth the surface normals by a bilateral filter. Such a method is capable of smoothing the surfaces and retaining the local details. Secondly, a novel method is proposed for the estimation of the saliency value of each vertex. To this end, two new features are defined: Retinex-based Importance Feature (RIF) and Relative Normal Distance (RND). They are based on the human visual perception characteristics and surface geometry respectively. Since the vertex based method cannot guarantee that the detected salient regions are semantically continuous and complete, we propose to refine such values based on surface patches. The detected saliency is finally used to guide the existing techniques for mesh simplification, interest point detection, and overlapping point cloud registration. The comparative studies based on real data from three publicly accessible databases show that the proposed method usually outperforms five selected state of the art ones both qualitatively and quantitatively for saliency detection and 3D shape analysis and understanding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced-Reference Image Quality Assessment based on saliency region extraction

In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...

متن کامل

Multi-scale mesh saliency based on low-rank and sparse analysis in shape feature space

a r t i c l e i n f o a b s t r a c t Keywords: Saliency Low-rank and sparse analysis Shape feature Structure This paper advocates a novel multi-scale mesh saliency method using the powerful low-rank and sparse analysis in shape feature space. The technical core of our approach is a new shape descriptor that embraces both local geometry information and global structure information in an integra...

متن کامل

Just Noticeable Difference Estimation Using Visual Saliency in Images

Due to some physiological and physical limitations in the brain and the eye, the human visual system (HVS) is unable to perceive some changes in the visual signal whose range is lower than a certain threshold so-called just-noticeable distortion (JND) threshold. Visual attention (VA) provides a mechanism for selection of particular aspects of a visual scene so as to reduce the computational loa...

متن کامل

Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain

When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...

متن کامل

Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs

This paper proposes a novel saliency detection method by combining region-level saliency estimation and pixel-level saliency prediction with CNNs (denoted as CRPSD). For pixel-level saliency prediction, a fully convolutional neural network (called pixel-level CNN) is constructed by modifying the VGGNet architecture to perform multiscale feature learning, based on which an image-to-image predict...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 197  شماره 

صفحات  -

تاریخ انتشار 2016