GATA factor genes in the Drosophila midgut embryo
نویسندگان
چکیده
The Drosophila GATA factor gene serpent (srp) is required for the early differentiation of the anterior and posterior midgut primordia. In particular, srp is sufficient and necessary for the primordial gut cells to undertake an epithelial-to-mesenchimal transition (EMT). Two other GATA factor genes, dGATAe and grain (grn), are also specifically expressed in the midgut. On the one hand, dGATAe expression is activated by srp. Embryos homozygous for a deficiency uncovering dGATAe were shown to lack the expression of some differentiated midgut genes. Moreover, ectopic expression of dGATAe was sufficient to drive the expression of some of these differentiation marker genes, thus establishing the role of dGATAe in the regulation of their expression. However, due to the gross abnormalities associated with this deficiency, it was not possible to assess whether, similarly to srp, dGATAe might play a role in setting the midgut morphology. To further investigate this role we decided to generate a dGATAe mutant. On the other hand, grn is expressed in the midgut primordia around stage 11 and remains expressed until the end of embryogenesis. Yet, no midgut function has been described for grn. First, here we report that, as for dGATAe, midgut grn expression is dependent on srp; conversely, dGATAe and grn expression are independent of each other. Our results also indicate that, unlike srp, dGATAe and grn are not responsible for setting the general embryonic midgut morphology. We also show that the analysed midgut genes whose expression is lacking in embryos homozygous for a deficiency uncovering dGATAe are indeed dGATAe-dependent genes. Conversely, we do not find any midgut gene to be grn-dependent, with the exception of midgut repression of the proventriculus iroquois (iro) gene. In conclusion, our results clarify the expression patterns and function of the GATA factor genes expressed in the embryonic midgut.
منابع مشابه
A Drosophila growth factor homolog, decapentaplegic, regulates homeotic gene expression within and across germ layers during midgut morphogenesis.
The decapentaplegic (dpp) gene product, a member of the transforming growth factor-beta family, is required in Drosophila embryos for normal gastrulation and the establishment of dorsal-ventral polarity in the embryo. dpp is also expressed at specific positions in the visceral mesoderm along the developing midgut. We find that mutations that eliminate the visceral mesoderm expression of dpp lea...
متن کاملA Drosophila GATA family member that binds to Adh regulatory sequences is expressed in the developing fat body.
We have identified a Drosophila transcription factor that binds a sequence element found in the larval promoters of all known alcohol dehydrogenase (Adh) genes. DNA sequence analysis of cDNA clones encoding this protein, box A-binding factor (ABF), reveals that it is a member of the GATA family of transcriptional regulatory factors. ABF-binding sites within the D. mulleri and D. melanogaster la...
متن کاملA GATA family transcription factor is expressed along the embryonic dorsoventral axis in Drosophila melanogaster.
The GATA transcription factors are a family of C4 zinc finger-motif DNA-binding proteins that play defined roles in hematopoiesis as well as presumptive roles in other tissues where they are expressed (e.g., testis, neuronal and placental trophoblast cells) during vertebrate development. To investigate the possibility that GATA proteins may also be involved in Drosophila development, we have is...
متن کاملA CREB-binding site as a target for decapentaplegic signalling during Drosophila endoderm induction.
Decapentaplegic (Dpp) is an extracellular signal of the transforming growth factor-beta family with multiple functions during Drosophila development. For example, it plays a key role in the embryo during endoderm induction. During this process, Dpp stimulates transcription of the homeotic genes Ultrabithorax in the visceral mesoderm and labial in the subjacent endoderm. Here, we show that a cAM...
متن کاملFGF control of E-cadherin targeting in the Drosophila midgut impacts on primordial germ cell motility.
Embryo formation requires tight regulation and coordination of adhesion in multiple cell types. By undertaking imaging, three-dimensional (3D) reconstructions and genetic analysis during posterior midgut morphogenesis in Drosophila, we find a new requirement for the conserved fibroblast growth factor (FGF) signaling pathway in the maintenance of epithelial cell adhesion through FGF modulation o...
متن کامل