Blast wave loading pathways in heterogeneous material systems-experimental and numerical approaches.

نویسندگان

  • Veera Selvan
  • Shailesh Ganpule
  • Nick Kleinschmit
  • Namas Chandra
چکیده

Blast waves generated in the field explosions impinge on the head-brain complex and induce mechanical pressure pulses in the brain resulting in traumatic brain injury. Severity of the brain injury (mild to moderate to severe) is dependent upon the magnitude and duration of the pressure pulse, which in turn depends on the intensity and duration of the oncoming blast wave. A fluid-filled cylinder is idealized to represent the head-brain complex in its simplest form; the cylinder is experimentally subjected to an air blast of Friedlander type, and the temporal variations of cylinder surface pressures and strains and fluid pressures are measured. Based on these measured data and results from computational simulations, the mechanical loading pathways from the external blast to the pressure field in the fluid are identified; it is hypothesized that the net loading at a given material point in the fluid comprises direct transmissive loads and deflection-induced indirect loads. Parametric studies show that the acoustic impedance mismatches between the cylinder and the contained fluid as well as the flexural rigidity of the cylinder determine the shape/intensity of pressure pulses in the fluid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation of Circular Plates Deformation under Air Blast Wave

In the current research the maximum deflection of circular plates made of AA5010 and AA1100 alloys under blast load was investigated. Shock waves were produced by exploding a spherical charge in different distances from the center of plates. The ABAQUS software uses conwep equation for blast loading analysis. It was found the results of these simulations have about 30% to 40% inaccuracy in comp...

متن کامل

Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches.

Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is ...

متن کامل

Non-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading

In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geo...

متن کامل

Experimental Study of Masonry Structure Under Impact Loading and Comparing it with Numerical Modeling Results via Finite Element Model Updating

Given the sophisticated nature of the blast phenomenon in relation to structures, it is of significance to accurately investigate the structure behavior under blast loads. Due to its rapid and transient nature, blast loading is one of the most important dynamic loadings on the structures. Since masonry materials are widely used as the partition and bearing walls in the existing and newly-built ...

متن کامل

Numerical modeling of primary thoracic trauma because of blast

  Purpose: Since explosive blasts continue to cause casualties in both civil and military environments, there is a need for an understanding of the mechanisms of blast trauma at the human organ level, plus a more detailed predictive methodology. The primary goal of this research was to develop a finite element model capable of predicting primary blast injury to the lung so as to assist in the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 135 6  شماره 

صفحات  -

تاریخ انتشار 2013