Ultraviolet A irradiation induces senescence in human dermal fibroblasts by down-regulating DNMT1 via ZEB1
نویسندگان
چکیده
In this study, we report the role of DNA methyltransferase 1 (DNMT1) in ultraviolet A (UVA)-induced senescence in human dermal fibroblasts (HDFs). We show that DNMT1 expression was significantly reduced during UVA-induced senescence, and this senescence could be alleviated or aggravated by the up- or down-regulation of DNMT1, respectively. Expression of the transcription factor zinc finger E-box binding homeobox 1(ZEB1) also decreased after UVA irradiation, following a UVA-induced increase of intracellular reactive oxygen species (ROS). We show that ZEB1 binds to the DMNT1 promoter and regulates its transcription, which, in turn, affects cellular senescence. These changes in DMNT1 and ZEB1 expression following UVA exposure were confirmed in matched skin specimens that had or had not been sun-exposed. On analyzing the promoter methylation of 24 senescence associated genes in these matched skin specimens, we discovered that p53 promoter methylation was significantly reduced in sun-exposed skin. In vitro experiments confirmed that UVA irradiation reduced p53 promoter methylation, and DNMT1 up-regulation could reverse this effect. Collectively, down-regulation of ZEB1 caused by UVA induced ROS could transcriptionally inhibit DNMT1, leading to low methylation level of senescence related proteins p53 and increase its expression, eventually result in cellar senescence.
منابع مشابه
Elevated miR-34c-5p Mediates Dermal Fibroblast Senescence by Ultraviolet Irradiation
Previous studies showed that several miRNAs can regulate pathways involved in UVB-induced premature senescence and response to ultraviolet irradiation. It has also been reported that miR-34c-5p may be involved in senescence-related mechanisms. We propose that miR-34c-5p may play a crucial role in senescence of normal human primary dermal fibroblasts. Here, we explored the roles of miR-34c-5p in...
متن کاملMicrorna-217 modulates human skin fibroblast senescence by directly targeting DNA methyltransferase 1
DNA methyltransferase 1 (DNMT1) is a major epigenetic regulator associated with many biological processes. However, the roles and mechanisms of DNMT1 in skin aging are incompletely understood. Here we explored the role of DNMT1 in human skin fibroblasts senescence and its related regulatory mechanisms. DNMT1 expression decreased in passage-aged fibroblasts and DNMT1 silencing in young fibroblas...
متن کاملThe Protective Effect of Baicalin against UVB Irradiation Induced Photoaging: An In Vitro and In Vivo Study
OBJECTIVE This study was aimed to evaluate the anti-photoaging effects of baicalin on Ultraviolet B (UVB)-induced photoaging in the dorsal skin of hairless mice and premature senescence in human dermal fibroblasts. METHODS We established in vivo and in vitro photoaging models by repeated exposures to UVB irradiation. By HE staining, masson staining, immunohistostaing and real-time RT-PCR, we ...
متن کاملSenescence of human fibroblasts after psoralen photoactivation is mediated by ATR kinase and persistent DNA damage foci at telomeres.
Cellular senescence is a phenotype that is likely linked with aging. Recent concepts view different forms of senescence as permanently maintained DNA damage responses partially characterized by the presence of senescence-associated DNA damage foci at dysfunctional telomeres. Irradiation of primary human dermal fibroblasts with the photosensitizer 8-methoxypsoralen and ultraviolet A radiation (P...
متن کاملAquatide Activation of SIRT1 Reduces Cellular Senescence through a SIRT1-FOXO1-Autophagy Axis
Ultraviolet (UV) irradiation is a relevant environment factor to induce cellular senescence and photoaging. Both autophagy- and silent information regulator T1 (SIRT1)-dependent pathways are critical cellular processes of not only maintaining normal cellular functions, but also protecting cellular senescence in skin exposed to UV irradiation. In the present studies, we investigated whether modu...
متن کامل