The Fabrication of Ga2O3/ZSM-5 Hollow Fibers for Efficient Catalytic Conversion of n-Butane into Light Olefins and Aromatics
نویسندگان
چکیده
In this study, the dehydrogenation component of Ga2O3 was introduced into ZSM-5 nanocrystals to prepare Ga2O3/ZSM-5 hollow fiber-based bifunctional catalysts. The physicochemical features of as-prepared catalysts were characterized by means of XRD, BET, SEM, STEM, NH3-TPD, etc., and their performances for the catalytic conversion of n-butane to produce light olefins and aromatics were investigated. The results indicated that a very small amount of gallium can cause a marked enhancement in the catalytic activity of ZSM-5 because of the synergistic effect of the dehydrogenation and aromatization properties of Ga2O3 and the cracking function of ZSM-5. Compared with Ga2O3/ZSM-5 nanoparticles, the unique hierarchical macro-meso-microporosity of the as-prepared hollow fibers can effectively enlarge the bifunctionality by enhancing the accessibility of active sites and the diffusion. Consequently, Ga2O3/ZSM-5 hollow fibers show excellent catalytic conversion of n-butane, with the highest yield of light olefins plus aromatics at 600 ̋C by 87.6%, which is 56.3%, 24.6%, and 13.3% higher than that of ZSM-5, ZSM-5 zeolite fibers, and Ga2O3/ZSM-5, respectively.
منابع مشابه
Thermodynamic Analysis of Light Olefins Production via Cracking of n-Hexane Using Gibbs Energy Minimization Approach and Analysis of Overall Reactions
Thermodynamic analysis of the cracking of hexane has been conducted by the Gibbs free energy minimization method and second law analysis of overall reactions. By-products have been divided into three groups of methane, alkynes and aromatics and their possible production paths have been discussed. Effect of operating conditions such as temperature and steam-to-hexane ratio on the cracking perfor...
متن کاملHierarchical Macro-meso-microporous ZSM-5 Zeolite Hollow Fibers With Highly Efficient Catalytic Cracking Capability
Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile ...
متن کاملCatalytic Pyrolysis of Willow Wood with Me/ZSM-5 (Me = Mg, K, Fe, Ga, Ni) to Produce Aromatics and Olefins
Biomass catalytic fast pyrolysis is one of the most promising technologies for the production of renewable aromatics and olefins directly from solid biomass. In this study, catalytic pyrolysis experiments were carried out on biomass in a fluidized bed reactor using typical metal-loaded (Mg, K, Fe, Ga, and Ni) ZSM-5 zeolites as catalysts. The effects of catalysts on the product distribution and ...
متن کاملNon-oxidative conversion of methane to aromatics over modified zeolite catalysts by transitional metals
The activity of different transitional metals over modified H-ZSM-5 catalysts for methane conversion to aromatics was compared. The first group of catalysts was Mo-impregnated H-ZSM-5 zeolites with 1, 3 and 6 wt% of Mo. The second group was M(3 wt%)- impregnated H-ZSM-5 (M: Ag, Cd, Cr, Mo, Zn and Mn). The catalytic activity of the first group was investigated at 600, 700 and 800 °C and gas hour...
متن کاملSynthesis, Characterization and Catalytic Activity of a New Chromium Catalyst Supported on Nanoporous MCM-41 for Oxidation of Olefins and Alkyl Aromatics
The mesoporous molecular sieve MCM-41 was covalently grafted with 3-chloropropyl trimethoxylsilane and then was reacted with [Cr(salpr)(H2O)]Cl, (salpr = N,N'-bis(3-salicylidenaminopropyl)amine) to afford MCM-41 containing Cr(salpr) moiety, Cr(salpr)MCM-41. Powder X-ray diffraction and nitrogen adsorption-desorption analyses revealed that not only the textural characteristics of the support wer...
متن کامل