Lytic and Non-Lytic Permeabilization of Cardiolipin-Containing Lipid Bilayers Induced by Cytochrome c

نویسندگان

  • Jian Xu
  • T. Kyle Vanderlick
  • Paul A. Beales
چکیده

The release of cytochrome c (cyt c) from mitochondria is an important early step during cellular apoptosis, however the precise mechanism by which the outer mitochondrial membrane becomes permeable to these proteins is as yet unclear. Inspired by our previous observation of cyt c crossing the membrane barrier of giant unilamellar vesicle model systems, we investigate the interaction of cyt c with cardiolipin (CL)-containing membranes using the innovative droplet bilayer system that permits electrochemical measurements with simultaneous microscopy observation. We find that cyt c can permeabilize CL-containing membranes by induction of lipid pores in a dose-dependent manner, with membrane lysis eventually observed at relatively high (µM) cyt c concentrations due to widespread pore formation in the membrane destabilizing its bilayer structure. Surprisingly, as cyt c concentration is further increased, we find a regime with exceptionally high permeability where a stable membrane barrier is still maintained between droplet compartments. This unusual non-lytic state has a long lifetime (>20 h) and can be reversibly formed by mechanically separating the droplets before reforming the contact area between them. The transitions between behavioural regimes are electrostatically driven, demonstrated by their suppression with increasing ionic concentrations and their dependence on CL composition. While membrane permeability could also be induced by cationic PAMAM dendrimers, the non-lytic, highly permeable membrane state could not be reproduced using these synthetic polymers, indicating that details in the structure of cyt c beyond simply possessing a cationic net charge are important for the emergence of this unconventional membrane state. These unexpected findings may hold significance for the mechanism by which cyt c escapes into the cytosol of cells during apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death.

Mitochondria are known to actively regulate cell death with the final phenotype of demise being determined by the metabolic and energetic status of the cell. Mitochondrial membrane permeabilization (MMP) is a critical event in cell death, as it regulates the degree of mitochondrial dysfunction and the release of intermembrane proteins that function in the activation and assembly of caspases. In...

متن کامل

Lipid antioxidants: free radical scavenging versus regulation of enzymatic lipid peroxidation

The essentiality of polyunsaturated lipids makes membranes susceptible to peroxidative modifications. One of the most contemporary examples includes selective peroxidation of cardiolipin in mitochondria of cells undergoing apoptosis. Cardiolipin peroxidation products are required for the mitochondrial membrane permeabilization, release of pro-apoptotic factors and completion of the cell death p...

متن کامل

Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c.

The cellular process of intrinsic apoptosis relies on the peroxidation of mitochondrial lipids as a critical molecular signal. Lipid peroxidation is connected to increases in mitochondrial reactive oxygen species, but there is also a required role for mitochondrial cytochrome c (cyt-c). In apoptotic mitochondria, cyt-c gains a new function as a lipid peroxidase that catalyzes the reactive oxyge...

متن کامل

Incorporation of cytochrome oxidase into cardiolipin bilayers and induction of nonlamellar phases.

Cytochrome oxidase from beef heart has been lipid-substituted with beef heart cardiolipin. The lipid phase behavior and protein aggregation state of the reconstituted complexes have been studied with 31P NMR, freeze-fracture electron microscopy, and saturation-transfer ESR of the spin-labeled protein. In the absence of salt, the lipid has a lamellar arrangement, and the protein is integrated an...

متن کامل

Steroid structural requirements for interaction of ostreolysin, a lipid-raft binding cytolysin, with lipid monolayers and bilayers.

Ostreolysin, a cytolytic protein from the edible oyster mushroom (Pleurotus ostreatus), recognizes and binds specifically to membrane domains enriched in cholesterol and sphingomyelin (or saturated phosphatidylcholine). These events, leading to permeabilization of the membrane, suggest that a cholesterol-rich liquid-ordered membrane phase, which is characteristic of lipid rafts, could be its po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013