Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses
نویسندگان
چکیده
Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop.
منابع مشابه
Alfalfa Cellulose Synthase Gene Expression under Abiotic Stress: A Hitchhiker’s Guide to RT-qPCR Normalization
Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of r...
متن کاملاثرات تلقیح ریزوبیومی بر شاخصهای تشریحی برگ یونجه (Medicago sativa) تحت آلودگی گاز دیاکسیدگوگرد
Abstract: Sulphur dioxide (SO2) is one of the main air pollutants that can cause imbalance in growth and physiological function of plant in high concentrations. Rhizobium-plant symbiosis can cause increasing in plant resistance to abiotic and biotic stresses in addition to increase growth of plant. In this study, effects of Rhizobium (native and standard strains) on leaf anatomical parameter...
متن کاملPlant Responses to Individual and Combined Effects of Abiotic Stresses: Lycium depressum L. Vegetative Parameters under Salinity and Drought
Lycium depressum L. is the only native tree-like life-form species inhabited in saline and alkaline regions of Turkmen Sahra located at Golestan province in Northern Iran. During past years, efforts have been made to increase vegetation cover of the area by cultivation of L. depressum L. to reduce water and wind erosions and dust storm challenges; however, the cultivation of t...
متن کاملشناسایی رونوشتهای با افزایش تظاهر در رقم برنج (Oryza sativa L.) مقاوم به تنش شوری با استفاده از تکنیک cDNA-AFLP
Salt stress is one of the main abiotic stresses for rice that causes negative effects on its growth and productivity. In present study, effects of salt stress on differential gene expression of some genes which are responsible in salt stress were investigated in two rice tolerant and sensitive genotypes (FL478 and IR29) by applying cDNA-AFLP technique. Among the TDFs (Transcript Derived F...
متن کاملنقش سیلیکون در کاهش تنش کمبود و سمیت آهن در کشت هیدروپونیک گیاه برنج (Oryza sativa L.)
Silicon (Si) nutrition may alleviate biotic and abiotic stresses including heavy metal deficiency and toxicity in plants. Iron deficiency and toxicity are important limiting factors in growth of rice. In the present study, role of Si nutrition on alleviation of iron deficiency and toxicity was investigated in rice plants. Plants were cultivated in greenhouse in hydroponics, using Yoshida soluti...
متن کامل