Improvement of the Stability Solving Rational Polynomial Coefficients
نویسندگان
چکیده
The rational function model (RFM) utilized for high resolution satellite imagery (HRSI) provides a transformation from image to object space coordinates in a geographic reference system. Compared with the rigorous model based on the collinearity condition equation or the affine model, the RFM with 80 coefficients would be over parameterized. That would result in an ill-conditioned normal equation. Tikhonov regularization is often used to resolve this problem, and many applications have verified its serviceability. This paper will detail the method for regularization parameter selection. However, Tikhonov regularization makes the two sides of equation unequal, resulting in a biased solution. An unbiased method The Iteration by Correcting Characteristic Value (ICCV) was introduced, and a strategy to resolve the ill-conditioned problem for solving rational polynomial coefficients (RPCs) was discussed in this paper. The tests with SPOT-5 and QuickBird imagery were accomplished. The empirical results have shown that our methodology can effectively improve the condition of the normal equations.
منابع مشابه
Polynomial and Rational Solutions of Holonomic Systems
Polynomial and rational solutions for linear ordinary differential equations can be obtained by algorithmic methods. For instance, the maple package DEtools provides efficient functions polysols and ratsols to find polynomial and rational solutions for a given linear ordinary differential equation with rational function coefficients. A natural analogue of the notion of linear ordinary different...
متن کاملNon-polynomial Spline Method for Solving Coupled Burgers Equations
In this paper, non-polynomial spline method for solving Coupled Burgers Equations are presented. We take a new spline function. The stability analysis using Von-Neumann technique shows the scheme is unconditionally stable. To test accuracy the error norms 2L, L are computed and give two examples to illustrate the sufficiency of the method for solving such nonlinear partial differential equation...
متن کاملA Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases
In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...
متن کاملA method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملThe best uniform polynomial approximation of two classes of rational functions
In this paper we obtain the explicit form of the best uniform polynomial approximations out of Pn of two classes of rational functions using properties of Chebyshev polynomials. In this way we present some new theorems and lemmas. Some examples will be given to support the results.
متن کامل