Partitioning a weighted partial order
نویسندگان
چکیده
The problem of partitioning a partially ordered set into a minimum number of chains is a well-known problem. In this paper we study a generalization of this problem, where we not only assume that the chains have bounded size, but also that a weight wi is given for each element i in the partial order such that wi ≤ wj if i ≺ j. The problem is then to partition the partial order into a minimum-weight set of chains of bounded size, where the weight of a chain equals the weight of the heaviest element in the chain. We prove that this problem is APX -hard, and we propose and analyze lower bounds for this problem. Based on these lower bounds, we exhibit a 2-approximation algorithm, and show that it is tight. We report computational results for a number of real-world and randomly generated problem instances.
منابع مشابه
Design and Evaluation of a Method for Partitioning and Offloading Web-based Applications in Mobile Systems with Bandwidth Constraints
Computation offloading is known to be among the effective solutions of running heavy applications on smart mobile devices. However, irregular changes of a mobile data rate have direct impacts on code partitioning when offloading is in progress. It is believed that once a rate-adaptive partitioning performed, the replication of such substantial processes due to bandwidth fluctuation can be avoid...
متن کاملOn Partitioning for Maximum Satisfiability
Partitioning formulas is motivated by the expectation to identify easy to solve subformulas, even though at the cost of having more formulas to solve. In this paper we suggest to apply partitioning to Maximum Satisfiability (MaxSAT), the optimization version of the well-known Satisfiability (SAT) problem. The use of partitions can be naturally combined with unsatisfiability-based algorithms for...
متن کاملSeparating partial normality classes with weighted composition operators
In this article, we discuss measure theoretic characterizations for weighted composition operators in some operator classes on $L^{2}(Sigma)$ such as, $n$-power normal, $n$-power quasi-normal, $k$-quasi-paranormal and quasi-class$A$. Then we show that weighted composition operators can separate these classes.
متن کاملDetermination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کاملComplete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables
Let be a sequence of arbitrary random variables with and , for every and be an array of real numbers. We will obtain two maximal inequalities for partial sums and weighted sums of random variables and also, we will prove complete convergence for weighted sums , under some conditions on and sequence .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Optim.
دوره 15 شماره
صفحات -
تاریخ انتشار 2008