Structured sparsity-inducing norms through submodular functions
نویسنده
چکیده
Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turned into a convex optimization problem by replacing the cardinality function by its convex envelope (tightest convex lower bound), in this case the l1-norm. In this paper, we investigate more general set-functions than the cardinality, that may incorporate prior knowledge or structural constraints which are common in many applications: namely, we show that for nondecreasing submodular set-functions, the corresponding convex envelope can be obtained from its Lovász extension, a common tool in submodular analysis. This defines a family of polyhedral norms, for which we provide generic algorithmic tools (subgradients and proximal operators) and theoretical results (conditions for support recovery or high-dimensional inference). By selecting specific submodular functions, we can give a new interpretation to known norms, such as those based on rank-statistics or grouped norms with potentially overlapping groups; we also define new norms, in particular ones that can be used as non-factorial priors for supervised learning.
منابع مشابه
A unified perspective on convex structured sparsity: Hierarchical, symmetric, submodular norms and beyond
In this paper, we propose a unified theory for convex structured sparsity-inducing norms on vectors associated with combinatorial penalty functions. Specifically, we consider the situation of a model simultaneously (a) penalized by a set-function defined on the support of the unknown parameter vector which represents prior knowledge on supports, and (b) regularized in `pnorm. We show that each ...
متن کاملShaping Level Sets with Submodular Functions
We consider a class of sparsity-inducing regularization terms based on submodular functions. While previous work has focused on non-decreasing functions, we explore symmetric submodular functions and their Lovász extensions. We show that the Lovász extension may be seen as the convex envelope of a function that depends on level sets (i.e., the set of indices whose corresponding components of th...
متن کاملLearning with Submodular Functions: A Convex Optimization Perspective
Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analy...
متن کاملA Convex Formulation for Learning Scale-Free Networks via Submodular Relaxation
A key problem in statistics and machine learning is the determination of network structure from data. We consider the case where the structure of the graph to be reconstructed is known to be scale-free. We show that in such cases it is natural to formulate structured sparsity inducing priors using submodular functions, and we use their Lovász extension to obtain a convex relaxation. For tractab...
متن کاملSTRUCTURED VARIABLE SELECTION WITH SPARSITY-INDUCING NORMS Structured Variable Selection with Sparsity-Inducing Norms
We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsity-inducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual l1-norm and the group l1-norm by allowing the subsets to overlap. This leads to a specific set of allowed nonzero patterns for the solutions of such problem...
متن کامل