The Quantum Cohomology Ring of Flag Varieties
نویسنده
چکیده
We describe the small quantum cohomology ring of complete flag varieties by algebro-geometric methods, as presented in our previous work Quantum cohomology of flag varieties (Internat. Math. Res. Notices, no. 6 (1995), 263–277). We also give a geometric proof of the quantum Monk formula.
منابع مشابه
A Positive Monk Formula in the S1-equivariant Cohomology of Type a Peterson Varieties
Peterson varieties are a special class of Hessenberg varieties that have been extensively studied e.g. by Peterson, Kostant, and Rietsch, in connection with the quantum cohomology of the flag variety. In this manuscript, we develop a generalized Schubert calculus, and in particular a positive Chevalley-Monk formula, for the ordinary and Borel-equivariant cohomology of the Peterson variety Y in ...
متن کاملQuantum Cohomology of Flag Manifolds
In this paper, we study the (small) quantum cohomology ring of the partial flag manifold. We give proofs of the presentation of the ring and of the quantum Giambelli formula for Schubert varieties. These are known results, but our proofs are more natural and direct than the previous ones. One of our goals is to give evidence of a relationship between universal Schubert polynomials, which give t...
متن کاملThe Quantum Cohomology of Flag Varieties and the Periodicity of the Schubert Structure Constants
We give conditions on a curve class that guarantee the vanishing of the structure constants of the small quantum cohomology of partial flag varieties F (k1, . . . , kr; n) for that class. We show that many of the structure constants of the quantum cohomology of flag varieties can be computed from the image of the evaluation morphism. In fact, we show that a certain class of these structure cons...
متن کاملThe Quantum Cohomology of Flag Varieties and the Periodicity of the Littlewood-richardson Coefficients
We give conditions on a curve class that guarantee the vanishing of the structure constants of the small quantum cohomology of partial flag varieties F (k1, . . . , kr; n) for that class. We show that many of the structure constants of the quantum cohomology of flag varieties can be computed from the image of the evaluation morphism. In fact, we show that a certain class of these structure cons...
متن کامل. A G ] 6 O ct 1 99 7 ON QUANTUM COHOMOLOGY RINGS OF PARTIAL FLAG VARIETIES
The main goal of this paper is to give a unified description for the structure of the small quantum cohomology rings for all homogeneous spaces of SL n (C). The quantum cohomology ring of a smooth projective variety, or, more generally of a symplectic manifold, has been introduced by physicists in the study of topo-logical field theories ([V], [W]). In the past few years, the highly non-trivial...
متن کامل