Joint action of polycyclic aromatic hydrocarbons: predictive modeling of sublethal toxicity.
نویسندگان
چکیده
Polycyclic aromatic hydrocarbons (PAHs) typically contaminate the environment as complex assemblages of different chemical compounds. Modeling approaches provide a means of estimating the toxicity of these PAH mixtures. In the present study, we tested the hypothesis that the joint effects of four PAHs: pyrene, phenanthrene, fluoranthene and naphthalene, on the growth rate of the crustacean Daphnia magna during sub-chronic exposure could be accurately predicted using a mathematical algorithm for concentration addition based upon the assumption that these PAHs impact growth by a common mode of action. Assessment of the individual toxicity of the four PAHs confirmed that these compounds elicited the common effect of retarding growth of daphnids at concentrations below those that were lethal to the organisms. Using the experimentally derived toxicity parameters for the individual chemicals, the toxicity of multiple mixtures of these four PAHs was modeled. These mixtures were based on concentrations reported in the environment and on equi-toxic concentrations. The effects of over 140 combinations of four mixture formulations on the growth rate of daphnids were experimentally determined and compared to model predictions. The concentration addition models tended to over predict the joint toxicity of these PAH mixtures and experimental data was better represented by an alternative model based upon the concept of independent joint action. Mixtures at environmentally relevant concentrations were predicted and experimentally demonstrated to have no effect on daphnid growth rates. Results indicate that PAHs elicit toxicity to daphnids by multiple mechanisms and demonstrate an appropriate modeling approach to assess the toxicity of these mixtures.
منابع مشابه
QSPR models to predict thermodynamic properties of some mono and polycyclic aromatic hydrocarbons (PAHs) using GA-MLR
Quantitative Structure-Property Relationship (QSPR) models for modeling and predicting thermodynamic properties such as the enthalpy of vaporization at standard condition (ΔH˚vap kJ mol-1) and normal temperature of boiling points (T˚bp K) of 57 mono and Polycyclic Aromatic Hydrocarbons (PAHs) have been investigated. The PAHs were randomly separated into 2 groups: training and test sets. A set o...
متن کاملJoint toxicity of cadmium and phenanthrene in the freshwater amphipod Hyalella azteca.
The joint toxicity of combined metals and polynuclear aromatic hydrocarbons is poorly understood and may deviate from the summed concentration responses of the individual pollutants. The freshwater amphipod Hyalella azteca was exposed to sediment-amended Cd and phenanthrene (Phen) individually and in combination using United States Environmental Protection Agency 10-day sediment toxicity bioass...
متن کاملSublethal toxicant effects with dynamic energy budget theory: model formulation
We develop and test a general modeling framework to describe the sublethal effects of pollutants by adding toxicity modules to an established dynamic energy budget (DEB) model. The DEB model describes the rates of energy acquisition and expenditure by individual organisms; the toxicity modules describe how toxicants affect these rates by changing the value of one or more DEB parameters, notably...
متن کاملAltering cytochrome P4501A activity affects polycyclic aromatic hydrocarbon metabolism and toxicity in rainbow trout (Oncorhynchus mykiss).
The polycyclic aromatic hydrocarbons (PAHs) phenanthrene and retene (7-isopropyl-1-methyl phenanthrene) are lethal to rainbow trout (Oncorhynchus mykiss) larvae during chronic exposures. Phenanthrene is a low-toxicity, non-cytochrome P4501A (CYP1A)-inducing compound that accumulates in fish tissues during exposure to lethal concentrations in water. Retene is a higher toxicity CYP1A-inducing com...
متن کاملEnvironmental Photoinduced Toxicity of Polycyclic Aromatic Hydrocarbons: Occurrence and Toxicity of Photomodified PAHs and Predictive Modeling of Photoinduced Toxicity
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants known for their photoinduced toxicity. There are two mechanisms through which this may occur: photosensitization and photomodification. Photosensitization generally leads to the production of singlet oxygen, a reactive oxygen species (ROS), which is highly damaging to biological molecules. Photomodification of PAH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Aquatic toxicology
دوره 75 3 شماره
صفحات -
تاریخ انتشار 2005