Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis.

نویسندگان

  • S J Admiraal
  • D Herschlag
چکیده

BACKGROUND Phosphoryl transfer, typically involving high energy phosphate donors such as ATP, is the most common class of biological reactions. Despite this, the transition state for phosphoryl transfer from ATP in solution has not been systematically investigated. Characterization of the transition state for the uncatalyzed hydrolysis of ATP would provide a starting point for dissection of enzyme-catalyzed reactions. RESULTS We examined phosphoryl transfer from ATP, GTP and pyrophosphate to a series of alcohols; these reactions are analogous to the phosphorylation of sugars and other biological alcohols and to the hydrolysis of ATP. The Brønsted beta(nucleophile) value of 0.07 is small, indicating that there is little bond formation between the incoming nucleophile and the electrophilic phosphoryl group in the transition state. Coordination of Mg2+ has no measurable effect on this value. The Brønsted beta(leaving group) value of -1.1 for phosphoryl transfer to water from a series of phosphoanhydrides is large and negative, suggesting that the bond between phosphorous and the leaving group oxygen is largely broken in the transition state. CONCLUSIONS Uncatalyzed hydrolysis of ATP in solution occurs via a dissociative, metaphosphate-like transition state, with little bond formation between nucleophile and ATP and substantial cleavage of the bond between the gamma-phosphoryl moiety and the ADP leaving group. Bound Mg2+ does not perturb the dissociative nature of the transition state, contrary to proposals that enzyme-bound metal ions alter this structure. The simplest expectation for phosphoryl transfer at the active site of enzymes thus entails a dissociative transition state. These results provide a basis for analyzing catalytic mechanisms for phosphoryl transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis.

Enzyme-catalyzed phosphoryl transfer reactions have frequently been suggested to proceed through transition states that are altered from their solution counterparts, with the alterations presumably arising from interactions with active-site functional groups. In particular, the phosphate monoester hydrolysis reaction catalyzed by Escherichia coli alkaline phosphatase (AP) has been the subject o...

متن کامل

The ATP synthase--a splendid molecular machine.

An X-ray structure of the F1 portion of the mitochondrial ATP synthase shows asymmetry and differences in nucleotide binding of the catalytic beta subunits that support the binding change mechanism with an internal rotation of the gamma subunit. Other structural and mutational probes of the F1 and F0 portions of the ATP synthase are reviewed, together with kinetic and other evaluations of catal...

متن کامل

Atomic-Level Characterization of the Activation Mechanism of SERCA by Calcium

We have performed molecular dynamics (MD) simulations to elucidate, in atomic detail, the mechanism by which the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) is activated by Ca(2+). Crystal structures suggest that activation of SERCA occurs when the cytoplasmic head-piece, in an open (E1) conformation stabilized by Ca(2+), undergoes a large-scale open-to-closed (E1 to E2) transition that is ind...

متن کامل

Rate acceleration of ATP hydrolysis by F(1)F(o)-ATP synthase.

The rate acceleration of ATP hydrolysis by F(1)F(o)-ATP synthase is of the order of 10(11)-fold. We present a cyclic enzyme mechanism for the reaction, relate it to known F(1) X-ray structure and speculate on the linkage between enzyme reaction intermediates and subunit rotation. Next, we describe five factors known to be important in the Escherichia coli enzyme for the rate acceleration. First...

متن کامل

The nature of the transition state for enzyme-catalyzed phosphoryl transfer. Hydrolysis of O-aryl phosphorothioates by alkaline phosphatase.

There has been much speculation that enzymes change the nature of the transition state for phosphoryl transfer from the dissociative transition state observed in solution reactions to an associative transition state at the enzyme's active site. This proposal can be tested by comparing linear free energy relationships (LFERs) for nonenzymatic and enzymatic reactions, provided that the specificit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry & biology

دوره 2 11  شماره 

صفحات  -

تاریخ انتشار 1995