The Thin Plate as a Regularizer in Bayesian SPECT Reconstruction

نویسندگان

  • S. J. Lee
  • I. T. Hsiao
  • G. R. Gindi
چکیده

Bayesian MAP (maximum a posteriori) methods for SPECT reconstruction can both stabilize reconstructions and lead to better bias and variance relative to ML methods. In previous work [1], a nonquadratic prior (the weak plate) that imposed piecewise smoothness on the first derivative of the solution led to much improved bias/variance behavior relative to results obtained using a more conventional nonquadratic prior (the weak membrane) that imposed piecewise smoothness of the zeroth derivative. By relaxing the requirement of imposing spatial discontinuities and using instead a quadratic (no discontinuities) smoothing prior, algorithms become easier to analyze, solutions easier to compute, and hyperparameter calculation becomes less of a problem. In this work, we investigated whether the advantages of weak plate relative to weak membrane are retained when non-piecewise quadratic versions the thin plate and membrane priors are used. We compared, with three different phantoms, the bias/variance behavior of three approaches: (1) FBP with membrane and thin plate implemented as smoothing filters, (2) ML-EM with two stopping criteria, and (3) MAP with thin plate and membrane priors. In cases (1) and (3), the thin plate always led to better bias behavior at comparable variance relative to membrane priors/filters. Also, approaches (1) and (3) outperformed ML-EM at both stopping criteria. The net conclusion is that, while quadratic smoothing priors are not as good as piecewise versions, the simple modification of the membrane model to the thin plate model leads to improved bias behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian image reconstruction in SPECT using higher order mechanical models as priors

While the ML-EM algorithm for reconstruction for emission tomography is unstable due to the ill-posed nature of the problem. Bayesian reconstruction methods overcome this instability by introducing prior information, often in the form of a spatial smoothness regularizer. More elaborate forms of smoothness constraints may be used to extend the role of the prior beyond that of a stabilizer in ord...

متن کامل

Collimator-detector response compensation in molecular SPECT reconstruction using STIR framework

Introduction:It is well-recognized that collimator-detector response (CDR) is the main image blurring factor in SPECT.  In this research, we compensated the images for CDR in molecular SPECT by using STIR reconstruction framework. Methods: To assess resolution recovery capability of the STIR, a phantom containing five point sources along with a micro Derenzo p...

متن کامل

Impact of Novel Incorporation of CT-based Segment Mapping into a Conjugated Gradient Algorithm on Bone SPECT Imaging: Fundamental Characteristics of a Context-specific Reconstruction Method

Objective(s): The latest single-photon emission computed tomography (SPECT)/computed tomography (CT) reconstruction system, referred to as xSPECT Bone™, is a context-specific reconstruction system utilizing tissue segmentation information from CT data, which is called a zone map. The aim of this study was to evaluate theeffects of zone-map enhancement incorporated into the ordered-subset conjug...

متن کامل

Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3‐dimensional brain phantom

Objective: The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123I brain SPECT obtained by the hybrid SPECT/CT device. Methods: We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray mater, white matter and bone regions. It was filled with 123I solution (20...

متن کامل

Assessment of simulated patient motion and its effect on myocardial perfusion SPECT using two reconstruction methods (Filtered Backprojection;FBP and Iterative method) [Persian]

Introduction: Motion of the patient during myocardial perfusion SPECT could potentially results in false perfusion defects. The effect of different reconstruction methods on these artifacts is not studied. Clarification of the relation between the extent, severity and duration of motion with the resultant artifacts may be helpful in designing special soft wares for motion correction. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997