Clustering microarray gene expression data using weighted Chinese restaurant process
نویسنده
چکیده
MOTIVATION Clustering microarray gene expression data is a powerful tool for elucidating co-regulatory relationships among genes. Many different clustering techniques have been successfully applied and the results are promising. However, substantial fluctuation contained in microarray data, lack of knowledge on the number of clusters and complex regulatory mechanisms underlying biological systems make the clustering problems tremendously challenging. RESULTS We devised an improved model-based Bayesian approach to cluster microarray gene expression data. Cluster assignment is carried out by an iterative weighted Chinese restaurant seating scheme such that the optimal number of clusters can be determined simultaneously with cluster assignment. The predictive updating technique was applied to improve the efficiency of the Gibbs sampler. An additional step is added during reassignment to allow genes that display complex correlation relationships such as time-shifted and/or inverted to be clustered together. Analysis done on a real dataset showed that as much as 30% of significant genes clustered in the same group display complex relationships with the consensus pattern of the cluster. Other notable features including automatic handling of missing data, quantitative measures of cluster strength and assignment confidence. Synthetic and real microarray gene expression datasets were analyzed to demonstrate its performance. AVAILABILITY A computer program named Chinese restaurant cluster (CRC) has been developed based on this algorithm. The program can be downloaded at http://www.sph.umich.edu/csg/qin/CRC/.
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملAn improved algorithm for clustering gene expression data
MOTIVATION Recent advancements in microarray technology allows simultaneous monitoring of the expression levels of a large number of genes over different time points. Clustering is an important tool for analyzing such microarray data, typical properties of which are its inherent uncertainty, noise and imprecision. In this article, a two-stage clustering algorithm, which employs a recently propo...
متن کاملHierarchical Dirichlet process model for gene expression clustering
: Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data...
متن کاملبه کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 22 16 شماره
صفحات -
تاریخ انتشار 2006