Some Facts about Trigonometry and Euclidean Geometry

نویسنده

  • Roland Coghetto
چکیده

We calculate the values of the trigonometric functions for angles: π3 and π 6 , by [16]. After defining some trigonometric identities, we demonstrate conventional trigonometric formulas in the triangle, and the geometric property, by [14], of the triangle inscribed in a semicircle, by the proposition 3.31 in [15]. Then we define the diameter of the circumscribed circle of a triangle using the definition of the area of a triangle and prove some identities of a triangle [9]. We conclude by indicating that the diameter of a circle is twice the length of the radius.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Trigonometry and its Application in the Poincaré Ball Model of Hyperbolic Geometry

Hyperbolic trigonometry is developed and illustrated in this article along lines parallel to Euclidean trigonometry by exposing the hyperbolic trigonometric law of cosines and of sines in the Poincaré ball model of n-dimensional hyperbolic geometry, as well as their application. The Poincaré ball model of 3-dimensional hyperbolic geometry is becoming increasingly important in the construction o...

متن کامل

Euclidean, Spherical and Hyperbolic Trigonometry

This is a collection of some standard formulae from Euclidean, spherical and hyperbolic trigonometry, including some standard models of the hyperbolic plane. Proofs are not given.

متن کامل

The theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry

In [Comput. Math. Appl. 41 (2001), 135–147], A.A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar’s work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.

متن کامل

Spherical Conformal Geometry with Geometric Algebra

The study of spheres dates back to the first century in the book Sphaerica of Menelaus. Spherical trigonometry was thoroughly developed in modern form by Euler in his 1782 paper [?]. Spherical geometry in n-dimensions was first studied by Schläfli in his 1852 treatise, which was published posthumously in 1901 [?]. The most important transformation in spherical geometry, Möbius transformation, w...

متن کامل

Affine and Projective Universal Geometry

By recasting metrical geometry in a purely algebraic setting, both Euclidean and non-Euclidean geometries can be studied over a general field with an arbitrary quadratic form. Both an affine and a projective version of this new theory are introduced here, and the main formulas extend those of rational trigonometry in the plane. This gives a unified, computational model of both spherical and hyp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Formalized Mathematics

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2014