GLT-1 Transport Stoichiometry Is Constant at Low and High Glutamate Concentrations when Chloride Is Substituted by Gluconate

نویسندگان

  • Anatoli Y. Kabakov
  • Paul A. Rosenberg
  • Hendrik W. van Veen
چکیده

Glutamate is the major excitatory neurotransmitter, but prolonged exposure even at micromolar concentrations causes neuronal death. Extracellular glutamate is maintained at nanomolar level by glutamate transporters, which, however, may reverse transport and release glutamate. If and when the reverse occurs depends on glutamate transport stoichiometry (GTS). Previously we found that in the presence of chloride, the coupled GLT-1 glutamate transporter current and its relationship to radiolabeled glutamate flux significantly decreased when extracellular glutamate concentration increased above 0.2 mM, which implies a change in GTS. Such high concentrations are feasible near GLT-1 expressed close to synaptic release site during excitatory neurotransmission. The aim of this study was to determine GLT-1 GTS at both low (19-75 μM) and high (300-1200 μM) glutamate concentration ranges. GTS experiments were conducted in the absence of chloride to avoid contributions by the GLT-1 uncoupled chloride conductance. Mathematical analysis of the transporter thermodynamic equilibrium allowed us to derive equations revealing the number of a particular type of ion transported per elementary charge based on the measurements of the transporter reversal potential. We found that GLT-1a expressed in COS-7 cells co-transports 1.5 Na+, 0.5 Glu-, 0.5 H+ and counter-transports 0.6 K+ per elementary charge in both glutamate concentration ranges, and at both 37°C and 26°C temperatures. The thermodynamic parameter Q10 = 2.4 for GLT-1 turnover rate of 19 s-1 (37°C, -50 mV) remained constant in the 10 μM-10 mM glutamate concentration range. Importantly, the previously reported decrease in the current/flux ratio at high glutamate concentration was not seen in the absence of chloride in both COS-7 cells and cultured rat neurons. Therefore, only in the absence of chloride, GLT-1 GTS remains constant at all glutamate concentrations. Possible explanations for why apparent GTS might vary in the presence of chloride are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake.

Glutamate transport across the plasma membrane of neurons and glia is powered by the transmembrane electrochemical gradients for sodium, potassium, and pH, but there is controversy over the number of Na+ cotransported with glutamate. The stoichiometry of glutamate transporters is important because it determines a lower limit to the extracellular glutamate concentration, [glu]o, in both normal a...

متن کامل

Neuronal expression of the glutamate transporter GLT-1 in hippocampal microcultures.

To address the question of the relative contributions of glial and neuronal glutamate transport in the vertebrate CNS, we studied the distribution of forebrain glutamate transporters in rat hippocampal microcultures, a preparation in which physiological functions of glutamate transporters have been well characterized. Two of the three transporters, GLAST (EAAT1) and EAAC1 (EAAT3), are localized...

متن کامل

Proximity of Transmembrane Segments 5 and 8 of the Glutamate Transporter GLT-1 Inferred from Paired Cysteine Mutagenesis

BACKGROUND GLT-1 is a glial glutamate transporter which maintains low synaptic concentrations of the excitatory neurotransmitter enabling efficient synaptic transmission. Based on the crystal structure of the bacterial homologue Glt(Ph), it has been proposed that the reentrant loop HP2, which connects transmembrane domains (TM) 7 and 8, moves to open and close access to the binding pocket from ...

متن کامل

Enhanced expression of the high affinity glutamate transporter GLT-1 in C6 glioma cells delays tumour progression in rat.

High grade gliomas are known to release excitotoxic concentrations of glutamate, a process thought to contribute to their malignant phenotype through enhanced autocrine stimulation of their proliferation and destruction of the surrounding nervous tissue. A model of C6 glioma cells in which expression of the high affinity glutamate transporter GLT-1 can be manipulated both in vivo and in vitro w...

متن کامل

Content of ileal EAAC1 and hepatic GLT-1 high-affinity glutamate transporters is increased in growing vs. nongrowing lambs, paralleling increased tissue D- and L-glutamate, plasma glutamine, and alanine concentrations.

Glutamate is a central metabolite for whole-animal energy and N metabolism. This study tested the hypothesis that ileal epithelium, liver, and kidney content of system X-(AG) glutamate transporters EAAC1 and GLT-1 would be up-regulated to support growth of wethers (30 +/- 1.2 kg) fed a forage-based diet for at least 14 d to gain (2.0 x NEm; n = 9) vs. maintain (1.2 x NEm; n = 9) BW. We have pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015