Locally homogeneous rigid geometric structures on surfaces

نویسندگان

  • Sorin Dumitrescu
  • SORIN DUMITRESCU
چکیده

We study locally homogeneous rigid geometric structures on surfaces. We show that a locally homogeneous projective connection on a compact surface is flat. We also show that a locally homogeneous unimodular affine connection ∇ on a two dimensional torus is complete and, up to a finite cover, homogeneous. Let ∇ be a unimodular real analytic affine connection on a real analytic compact connected surface M . If ∇ is locally homogeneous on a nontrivial open set in M , we prove that ∇ is locally homogeneous on all of M .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally homogeneous structures on Hopf surfaces

We study holomorphic locally homogeneous geometric structures modelled on line bundles over the projective line. We classify these structures on primary Hopf surfaces. We write out the developing map and holonomy morphism of each of these structures explicitly on each primary Hopf surface.

متن کامل

Geometric Structures and Varieties of Representations

Many interesting geometric structures on manifolds can be interpreted as structures locally modelled on homogeneous spaces. Given a homogeneous space (X,G) and a manifold M , there is a deformation space of structures on M locally modelled on the geometry of X invariant under G. Such a geometric structure on a manifold M determines a representation (unique up to inner automorphism) of the funda...

متن کامل

Nonexistence of Invariant Rigid Structures and Invariant Almost Rigid Structures

We prove that certain volume preserving actions of Lie groups and their lattices do not preserve rigid geometric structures in the sense of Gromov. The actions considered are the ”exotic” examples obtained by Katok and Lewis and the first author, by blowing up closed orbits in the well known actions on homogeneous spaces. The actions on homogeneous spaces all preserve affine connections, wherea...

متن کامل

Holomorphic Affine Connections on Non-kähler Manifolds

Our aim here is to investigate the holomorphic geometric structures on compact complex manifolds which may not be Kähler. We prove that holomorphic geometric structures of affine type on compact Calabi-Yau manifolds with polystable tangent bundle (with respect to some Gauduchon metric on it) are locally homogeneous. In particular, if the geometric structure is rigid in Gromov’s sense, then the ...

متن کامل

Locally Homogeneous Geometric Manifolds

Motivated by Felix Klein’s notion that geometry is governed by its group of symmetry transformations, Charles Ehresmann initiated the study of geometric structures on topological spaces locally modeled on a homogeneous space of a Lie group. These locally homogeneous spaces later formed the context of Thurston’s 3-dimensional geometrization program. The basic problem is for a given topology Σ an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009