Calcineurin-NFAT signaling, together with GABP and peroxisome PGC-1{alpha}, drives utrophin gene expression at the neuromuscular junction.
نویسندگان
چکیده
We examined whether calcineurin-NFAT (nuclear factors of activated T cells) signaling plays a role in specifically directing the expression of utrophin in the synaptic compartment of muscle fibers. Immunofluorescence experiments revealed the accumulation of components of the calcineurin-NFAT signaling cascade within the postsynaptic membrane domain of the neuromuscular junction. RT-PCR analysis using synaptic vs. extrasynaptic regions of muscle fibers confirmed these findings by showing an accumulation of calcineurin transcripts within the synaptic compartment. We also examined the effect of calcineurin on utrophin gene expression. Pharmacological inhibition of calcineurin in mice with either cyclosporin A or FK506 resulted in a marked decrease in utrophin A expression at synaptic sites, whereas constitutive activation of calcineurin had the opposite effect. Mutation of the previously identified NFAT binding site in the utrophin A promoter region, followed by direct gene transfer studies in mouse muscle, led to an inhibition in the synaptic expression of a lacZ reporter gene construct. Transfection assays performed with cultured myogenic cells indicated that calcineurin acted additively with GA binding protein (GABP) to transactivate utrophin A gene expression. Because both GABP- and calcineurin-mediated pathways are targeted by peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), we examined whether this coactivator contributes to utrophin gene expression. In vitro and in vivo transfection experiments showed that PGC-1alpha alone induces transcription from the utrophin A promoter. Interestingly, this induction is largely potentiated by coexpression of PGC-1alpha with GABP. Together, these studies indicate that the synaptic expression of utrophin is also driven by calcineurin-NFAT signaling and occurs in conjunction with signaling events that involve GABP and PGC-1alpha.
منابع مشابه
Ca2+/calmodulin-based signalling in the regulation of the muscle fibre phenotype and its therapeutic potential via modulation of utrophin A and myostatin expression.
Ca2+ signalling plays an important role in excitation-contraction coupling and the resultant force output of skeletal muscle. It is also known to play a crucial role in modulating both short- and long-term muscle cellular phenotypic adaptations associated with these events. Ca2+ signalling via the Ca2+/calmodulin (CaM)-dependent phosphatase calcineurin (CnA) and via Ca2+/CaM-dependent kinases, ...
متن کاملInduction of utrophin gene expression by heregulin in skeletal muscle cells: role of the N-box motif and GA binding protein.
The modulation of utrophin gene expression in muscle by the nerve-derived factor agrin plausibly involves the trophic factor ARIA/heregulin. Here we show that heregulin treatment of mouse and human cultured myotubes caused a approximately 2.5-fold increase in utrophin mRNA levels. Transient transfection experiments with utrophin promoter-reporter gene constructs showed that this increase result...
متن کاملThe Ets transcription factor GABP is required for postsynaptic differentiation in vivo.
At chemical synapses, neurotransmitter receptors are concentrated in the postsynaptic membrane. During the development of the neuromuscular junction, motor neurons induce aggregation of acetylcholine receptors (AChRs) underneath the nerve terminal by the redistribution of existing AChRs and preferential transcription of the AChR subunit genes in subsynaptic myonuclei. Neural agrin, when express...
متن کاملExpression of utrophin A mRNA correlates with the oxidative capacity of skeletal muscle fiber types and is regulated by calcineurin/NFAT signaling.
Utrophin levels have recently been shown to be more abundant in slow vs. fast muscles, but the nature of the molecular events underlying this difference remains to be fully elucidated. Here, we determined whether this difference is due to the expression of utrophin A or B, and examined whether transcriptional regulatory mechanisms are also involved. Immunofluorescence experiments revealed that ...
متن کاملActivation of utrophin promoter by heregulin via the ets-related transcription factor complex GA-binding protein alpha/beta.
Utrophin/dystrophin-related protein is the autosomal homologue of the chromosome X-encoded dystrophin protein. In adult skeletal muscle, utrophin is highly enriched at the neuromuscular junction. However, the molecular mechanisms underlying regulation of utrophin gene expression are yet to be defined. Here we demonstrate that the growth factor heregulin increases de novo utrophin transcription ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 289 4 شماره
صفحات -
تاریخ انتشار 2005