On Post-Lie Algebras, Lie-Butcher Series and Moving Frames

نویسندگان

  • Hans Z. Munthe-Kaas
  • Alexander Lundervold
چکیده

Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on differential manifolds. These algebras have been extensively studied in recent years, both from algebraic operadic points of view and through numerous applications in numerical analysis, control theory, stochastic differential equations and renormalization. Butcher series are formal power series founded on pre-Lie algebras, used in numerical analysis to study geometric properties of flows on Euclidean spaces. Motivated by the analysis of flows on manifolds and homogeneous spaces, we investigate algebras arising from flat connections with constant torsion, leading to the definition of post-Lie algebras, a generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately associated with Euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan’s method of moving frames. Lie–Butcher series combine Butcher series with Lie series and are used to analyze flows on manifolds. In this paper we show that Lie–Butcher series are founded on post-Lie algebras. The functorial relations between post-Lie algebras and their enveloping algebras, called D-algebras, are explored. Furthermore, we develop new formulas for computations in free post-Lie Dedicated to Peter Olver in celebration of his 60th birthday. Communicated by Arieh Iserles. H.Z. Munthe-Kaas (B) Department of Mathematics, University of Bergen, Bergen, Norway e-mail: [email protected] A. Lundervold Inria Bordeaux Sud-Ouest, Bordeaux, France e-mail: [email protected] 584 Found Comput Math (2013) 13:583–613 algebras and D-algebras, based on recursions in a magma, and we show that Lie– Butcher series are related to invariants of curves described by moving frames.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some properties of nilpotent Lie algebras

In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.

متن کامل

Hopf Algebras of Formal Diffeomorphisms and Numerical Integration on Manifolds

B-series originated from the work of John Butcher in the 1960s as a tool to analyze numerical integration of differential equations, in particular Runge–Kutta methods. Connections to renormalization have been established in recent years. The algebraic structure of classical Runge–Kutta methods is described by the Connes–Kreimer Hopf algebra. Lie–Butcher theory is a generalization of B-series ai...

متن کامل

Lattice of full soft Lie algebra

In ‎this ‎paper, ‎we ‎study ‎the ‎relation ‎between ‎the ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎with ‎the ‎lattice theory. ‎We ‎introduce ‎the ‎concepts ‎of ‎the ‎lattice ‎of ‎soft ‎sets, ‎full ‎soft ‎sets ‎and ‎soft ‎Lie ‎algebras ‎and next, we ‎verify ‎some ‎properties ‎of ‎them. We ‎prove ‎that ‎the ‎lattice ‎of ‎the ‎soft ‎sets ‎on ‎a fixed parameter set is isomorphic to the power set of a ...

متن کامل

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

متن کامل

Fixed point approach to the Hyers-Ulam-Rassias approximation‎ ‎of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras

‎In this paper‎, ‎using fixed point method‎, ‎we prove the generalized Hyers-Ulam stability of‎ ‎random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras‎ ‎and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for‎ ‎the following $m$-variable additive functional equation:‎ ‎$$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013