Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice.

نویسندگان

  • Sean P Didion
  • Michael J Ryan
  • Lisa A Didion
  • Pamela E Fegan
  • Curt D Sigmund
  • Frank M Faraci
چکیده

Increased superoxide is thought to play a major role in vascular dysfunction in a variety of disease states. Superoxide dismutase (SOD) limits increases in superoxide; however, the functional significance of selected isoforms of SOD within the vessel wall are unknown. We tested the hypothesis that selective loss of CuZnSOD results in increased superoxide and altered vascular responsiveness in CuZnSOD-deficient (CuZnSOD(-/-)) mice compared with wild-type (CuZnSOD(+/+)) littermates. Total SOD activity was reduced (P<0.05) by approximately 60% and CuZnSOD protein was absent in aorta from CuZnSOD(-/-) as compared with wild-type mice. Vascular superoxide levels, measured using lucigenin (5 micro mol/L)-enhanced chemiluminescence and hydroethidine (2 micro mol/L)-based confocal microscopy, were increased (approximately 2-fold; P<0.05) in CuZnSOD(-/-) mice as compared with wild-type mice. Relaxation of the carotid artery in response to acetylcholine and authentic nitric oxide was impaired (P<0.05) in CuZnSOD(-/-) mice. For example, maximal relaxation to acetylcholine (100 micro mol/L) was 50+/-6% and 69+/-5% in CuZnSOD(-/-) and wild-type mice, respectively. Contractile responses of the carotid artery were enhanced (P<0.05) in CuZnSOD(-/-) mice in response to phenylephrine and serotonin, but not to potassium chloride or U46619. In vivo, dilatation of cerebral arterioles (baseline diameter=31+/-1 micro m) to acetylcholine was reduced by approximately 50% in CuZnSOD(-/-) mice as compared with wild-type mice (P<0.05). These findings provide the first direct insight into the functional importance of CuZnSOD in blood vessels and indicate that this specific isoform of SOD limits increases in superoxide under basal conditions. CuZnSOD-deficiency results in altered responsiveness in both large arteries and microvessels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterozygous CuZn superoxide dismutase deficiency produces a vascular phenotype with aging.

The goal of this study was to test the hypothesis that loss of a single copy of the gene for CuZn superoxide dismutase (CuZnSOD) increases vascular superoxide levels and produces vascular dysfunction with aging. Responses of carotid arteries from young (7 months) and old (22 to 24 months of age) heterozygous CuZnSOD-deficient (CuZnSOD(+/-)) mice and their wild-type (CuZnSOD(+/+)) littermates we...

متن کامل

Critical role for CuZn-superoxide dismutase in preventing angiotensin II-induced endothelial dysfunction.

The goal of the present study was to test the hypothesis that the CuZn isoform of superoxide dismutase (CuZnSOD) protects against angiotensin II (Ang II)-induced endothelial dysfunction. Vascular responses of carotid arteries from control, CuZnSOD-deficient (CuZnSOD(+/-)), and CuZnSOD transgenic mice were examined in vitro after overnight incubation with either vehicle or Ang II (1 or 10 nmol/L...

متن کامل

Essential role of copper-zinc superoxide dismutase for ischemia-induced neovascularization via modulation of bone marrow-derived endothelial progenitor cells.

OBJECTIVE To investigate the effect of oxidative stress on ischemia-induced neovascularization in copper-zinc (CuZn) superoxide dismutase (SOD)-deficient mice. METHODS AND RESULTS In the vascular wall, CuZnSOD is essential for protecting against excessive oxidative stress and maintaining endothelial function. However, its specific role for the development of new vessels in response to ischemi...

متن کامل

Hypertrophy of cerebral arterioles in mice deficient in expression of the gene for CuZn superoxide dismutase.

BACKGROUND AND PURPOSE Reactive oxygen species are believed to be an important determinant of vascular growth. We examined effects of genetic deficiency of copper-zinc superoxide dismutase (CuZnSOD; SOD1) on structure and function of cerebral arterioles. METHODS Systemic arterial pressure (SAP) and cross-sectional area of the vessel wall (CSA) and superoxide (O2-) levels (relative fluorescenc...

متن کامل

CuZn superoxide dismutase deficiency: culprit of accelerated vascular aging process.

Impairment of endothelium-dependent responses is an early landmark of endothelial dysfunction in blood vessels with aging and/or cardiovascular diseases.1 A critical manifestation of endothelial dysfunction is the reduced bioavailability of NO, a key vascular protective molecule and an independent predictor of cardiovascular events.2 Hence, stimuli decreasing vascular NO bioavailability manifes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 91 10  شماره 

صفحات  -

تاریخ انتشار 2002