Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength.
نویسندگان
چکیده
The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from gamma-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for 1H NMR, which can lead to more than linear sensitivity gains.
منابع مشابه
1H NMR spectroscopy of rat brain in vivo at 14.1Tesla: improvements in quantification of the neurochemical profile.
Ultra-short echo-time proton single voxel spectra of rat brain were obtained on a 14.1T 26 cm horizontal bore system. At this field, the fitted linewidth in the brain tissue of adult rats was about 11 Hz. New, separated resonances ascribed to phosphocholine, glycerophosphocholine and N-acetylaspartate were detected for the first time in vivo in the spectral range of 4.2-4.4 ppm. Moreover, impro...
متن کاملIn vivo 1H NMR spectroscopy of the human brain at 7 T.
In vivo 1H NMR spectra from the human brain were measured at 7 T. Ultrashort echo-time STEAM was used to minimize J-modulation and signal attenuation caused by the shorter T2 of metabolites. Precise adjustment of higher-order shims, which was achieved with FASTMAP, was crucial to benefit from this high magnetic field. Sensitivity improvements were evident from single-shot spectra and from the d...
متن کامل1H and 13C HR-MAS spectroscopy of intact biopsy samples ex vivo and in vivo 1H MRS study of human high grade gliomas.
High-resolution magic angle spinning (HR-MAS) one- and two-dimensional 1H and 13C nuclear magnetic resonance (NMR) spectroscopy has been used to study intact glioblastoma (GBM) brain tumour tissue. The results were compared with in vitro chemical extract and in vivo spectra. The resolution of 1H one-dimensional, 1H TOCSY and 13C HSQC HR-MAS spectra is comparable to that obtained on perchloric e...
متن کاملHighly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T.
An efficient shim system and an optimized localization sequence were used to measure in vivo 1H NMR spectra from cerebral cortex, hippocampus, striatum, and cerebellum of C57BL/6 mice at 9.4 T. The combination of automatic first- and second-order shimming (FASTMAP) with strong custom-designed second-order shim coils (shim strength up to 0.04 mT/cm2) was crucial to achieve high spectral resoluti...
متن کاملA Simple Approach for Obtaining High Resolution, High Sensitivity 1H NMR Metabolite Spectra of Biofluids with Limited Mass Supply
A simple approach is reported that yields high resolution, high sensitivity H NMR spectra of intact biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle and at a spinning rate of about 80Hz. A 2D pulse sequence called H PASS is used to produce a high-resolution H NMR spectrum that is free from magnetic susceptibility i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance
دوره 135 1 شماره
صفحات -
تاریخ انتشار 1998