A WD40 repeat protein regulates fungal cell differentiation and can be replaced functionally by the mammalian homologue striatin.
نویسندگان
چکیده
Fruiting body development in fungi is a complex cellular differentiation process that is controlled by more than 100 developmental genes. Mutants of the filamentous fungus Sordaria macrospora showing defects in fruiting body formation are pertinent sources for the identification of components of this multicellular differentiation process. Here we show that the sterile mutant pro11 carries a defect in the pro11 gene encoding a multimodular WD40 repeat protein. Complementation analysis indicates that the wild-type gene or C-terminally truncated versions of the wild-type protein are able to restore the fertile phenotype in mutant pro11. PRO11 shows significant homology to several vertebrate WD40 proteins, such as striatin and zinedin, which seem to be involved in Ca2+-dependent signaling in cells of the central nervous system and are supposed to function as scaffolding proteins linking signaling and eukaryotic endocytosis. Cloning of a mouse cDNA encoding striatin allowed functional substitution of the wild-type protein with restoration of fertility in mutant pro11. Our data strongly suggest that an evolutionarily conserved cellular process controlling eukaryotic cell differentiation may regulate fruiting body formation.
منابع مشابه
Designing Of Degenerate Primers-Based Polymerase Chain Reaction (PCR) For Amplification Of WD40 Repeat-Containing Proteins Using Local Allignment Search Method
Degenerate primers-based polymerase chain reaction (PCR) are commonly used for isolation of unidentified gene sequences in related organisms. For designing the degenerate primers, we propose the use of local alignment search method for searching the conserved regions long enough to design an acceptable primer pair. To test this method, a WD40 repeat-containing domain protein from Beauveria bass...
متن کاملThe coiled-coil protein-binding motif in Fusarium verticillioides Fsr1 is essential for maize stalk rot virulence.
Fusarium verticillioides (Sacc.) Nirenberg (teleomorph Gibberella moniliformis Wineland) is one of the key pathogens of maize stalk rot disease. However, a clear understanding of stalk rot pathogenesis is still lacking. Previously, we identified the F. verticillioides FSR1 gene, which plays a key role in fungal virulence and sexual mating. The predicted Fsr1 protein contains multiple protein-bi...
متن کاملEvidence for functional conservation of a mammalian homologue of the light-responsive plant protein COP1
Identified in Arabidopsis as a repressor of light-regulated development, the COP1 (constitutively photomorphogenic 1) protein is characterized by a RING-finger motif and a WD40 repeat domain [1]. The subcellular localization of COP1 is light-dependent. COP1 acts within the nucleus to repress photomorphogenic development, but light inactivates COP1 and diminishes its nuclear abundance [2]. Here,...
متن کاملZinedin, SG2NA, and striatin are calmodulin-binding, WD repeat proteins principally expressed in the brain.
Striatin is an intracellular protein characterized by four protein-protein interaction domains, a caveolin-binding motif, a coiled-coil structure, a calmodulin-binding domain, and a WD repeat domain, suggesting that it is a signaling or a scaffold protein. Down-regulation of striatin, which is expressed in a few subsets of neurons, impairs the growth of dendrites as well as rat locomotor activi...
متن کاملMitochondrial fission proteins regulate programmed cell death in yeast.
The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mamma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 3 1 شماره
صفحات -
تاریخ انتشار 2004