Relative error bounds for statistical classifiers based on the f-divergence
نویسندگان
چکیده
In language classification, measures like perplexity and Kullback-Leibler divergence are used to compare language models. While this bears the advantage of isolating the effect of the language model in speech and language processing problems, the measures have no clear relation to the corresponding classification error. In practice, an improvement in terms of perplexity does not necessarily correspond to an improvement in the error rate. It is well-known that Bayes decision rule is optimal if the true distribution is used for classification. Since the true distribution is unknown in practice, a model distribution is used instead, introducing suboptimality. We focus on the degradation introduced by a model distribution, and provide an upper bound on the error difference between Bayes decision and a modelbased decision rule in terms of the f-Divergence between the true and model distributions. Simulations are first presented to reveal a special case of the bound, followed by an analytic proof of the generalized bound and its tightness. In addition, the conditions that result in the boundary cases will be discussed. Several instances of the bound will be verified using simulations, and the bound will be used to study the effect of the language model on the classification error.
منابع مشابه
Application of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملA research on classification performance of fuzzy classifiers based on fuzzy set theory
Due to the complexities of objects and the vagueness of the human mind, it has attracted considerable attention from researchers studying fuzzy classification algorithms. In this paper, we propose a concept of fuzzy relative entropy to measure the divergence between two fuzzy sets. Applying fuzzy relative entropy, we prove the conclusion that patterns with high fuzziness are close to the classi...
متن کاملEstimating a Bounded Normal Mean Relative to Squared Error Loss Function
Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...
متن کامل-Divergences and Related Distances
Derivation of tight bounds on f -divergences and related distances is of interest in information theory and statistics. This paper improves some existing bounds on f -divergences. In some cases, an alternative approach leads to a simplified proof of an existing bound. Following bounds on the chi-squared divergence, an improved version of a reversed Pinsker’s inequality is derived for an arbitra...
متن کاملCombined Binary Classifiers with Applica
Many applications require classification of examples into one of several classes. A common way of designing such classifiers is to determine the class based on the outputs of several binary classifiers. We consider some of the most popular methods for combining the decisions of the binary classifiers, and improve existing bounds on the error rates of the combined classifier over the training se...
متن کامل