Trigonometric Calogero-Moser System as a Symmetry Reduction of KP Hierarchy

نویسنده

  • L. V. Bogdanov
چکیده

Trigonometric non-isospectral flows are defined for KP hierarchy. It is demonstrated that symmetry constraints of KP hierarchy associated with these flows give rise to trigonometric Calogero-Moser system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized KP hierarchy: Möbius Symmetry, Symmetry Constraints and Calogero-Moser System

Analytic-bilinear approach is used to study continuous and discrete non-isospectral symmetries of the generalized KP hierarchy. It is shown that Möbius symmetry transformation for the singular manifold equation leads to continuous or discrete non-isospectral symmetry of the basic (scalar or multicomponent KP) hierarchy connected with binary Bäcklund transformation. A more general class of multi...

متن کامل

KP Trigonometric Solitons and an Adelic Flag Manifold

We show that the trigonometric solitons of the KP hierarchy enjoy a differentialdifference bispectral property, which becomes transparent when translated on two suitable spaces of pairs of matrices satisfying certain rank one conditions. The result can be seen as a non-self-dual illustration of Wilson’s fundamental idea [Invent. Math. 133 (1998), 1–41] for understanding the (self-dual) bispectr...

متن کامل

ar X iv : m at h / 03 10 49 0 v 1 [ m at h . A G ] 3 1 O ct 2 00 3 FROM SOLITONS TO MANY – BODY SYSTEMS

We present a bridge between the KP soliton equations and the Calogero–Moser many-body systems through noncommutative algebraic geometry. The Calogero-Moser systems have a natural geometric interpretation as flows on spaces of spectral curves on a ruled surface. We explain how the meromorphic solutions of the KP hierarchy have an interpretation via a noncommutative ruled surface. Namely, we iden...

متن کامل

Calogero-Moser hierarchy and KP hierarchy

In [1], Airault, McKean and Moser observed that the motion of poles of a rational solution to the K-dV or Boussinesq equation obeys the Calogero-Moser dynamical system [2, 3, 4] with an extra condition on the configuration of poles. In [8], Krichever observed that the motion of poles of a solution to the KP equation which is rational in t1 obeys the Calogero-Moser dynamical system. In this note...

متن کامل

Spin Calogero Particles and Bispectral Solutions of the Matrix Kp Hierarchy

Pairs of n×n matrices whose commutator differ from the identity by a matrix of rank r are used to construct bispectral differential operators with r × r matrix coefficients satisfying the Lax equations of the Matrix KP hierarchy. Moreover, the bispectral involution on these operators has dynamical significance for the spin Calogero particles system whose phase space such pairs represent. In the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000