Visual cues eliciting the feeding reaction of a planktivorous fish swimming in a current.

نویسندگان

  • Martina Mussi
  • William N McFarland
  • Paolo Domenici
چکیده

The visual plankivorous feeding behaviour of the shiner perch (Cymatogaster aggregata) was investigated by means of a flow tank operated at various current speeds. Artemia salina was used as prey. In a second set of experiments, Artemia was darkened with black ink, to compare the visually mediated behaviour of C. aggregata while feeding on dark prey vs feeding on natural (i.e. semi-transparent) prey. The positions of the fish and its prey at the time of the feeding reaction of C. aggregata were measured in three dimensions. Prey were on average closer and more in line with the fish's axis when feeding reactions to darkened Artemia were considered, in comparison with natural Artemia. Three potential mechanisms triggering the feeding reaction of C. aggregata were explored: the prey may trigger a reaction in C. aggregata when it reaches a threshold (1) angular size, (2) angular velocity, or (3) rate of change of the angular size (i.e. loom) of the prey as it is carried passively by the current towards the fish. Our results show that angular velocity may trigger the fish's reaction when using semi-transparent prey, while loom may trigger the reaction to darkened prey. This suggests that feeding behaviour of planktivorous fish is flexible and can use different cues to trigger a motor reaction to prey with different visual characteristics. The feeding reaction appeared to occur at longer distances for semi-transparent rather than darkened Artemia. We suggest that semi-transparent Artemia were visible at greater distances because of their higher scattering (i.e. diffuse reflectance) that made them appear brighter when viewed against a dark background.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feeding ecology of blue swimming crab, Portunus segnis (Forskal, 1775) in Coastal waters of Chabahar, (Oman Sea)

Feeding habits of the blue swimming crab, Portunus segnis were studied in the coastal waters of Chabahar (Oman Sea) during the period from January 2015 to June 2015. The stomach contents of 623 crabs (included 138 males and 125 females) were analyzed. Their contents appeared to consist of mainly large quantities fish (48.2 %), crustaceans (19 %) and molluscs (15.7 %), also small quantities of s...

متن کامل

Mercury Biomagnification between Two Trophic Levels of a Grazing Food Chain (Plankton and Planktivorous Fish) in a Fresh Water Ecosystem

Background: The Present study was carried out to track and calculate Biomagnification Factor (BMF) of total mercury (T-Hg) between two different trophic levels (i.e., plankton and a planktivorous fish) in a fresh water grazing food chain. Methods: Experimental organisms were planktonic biomass and silver carp (Hypophthalmichthys molitrix) as a planktivorous fish. Silver carp samples were obt...

متن کامل

Agonistic acts as possible indicator of food anticipatory activity (FAA) in rainbow trou (Oncorhynchus mykiss)

Food anticipatory activity (FAA) was assessed in rainbow trout ( Oncorhynchus mykiss ) in two small raceways using demand-feeding (T2) and hand-feeding (t2). The fish of both raceways were subjected to restricted feeding (RF) at two times in two places and the fish distribution and/or trigger actuation, total agonistic behaviour between fish, and swimming speed were measured. Food anticipatory ...

متن کامل

Blind Mexican Cave Fish (astyanax Hubbsi) Respond to Moving Visual Stimuli

In apparatus for measuring optomotor behaviour, blind Mexican cave fish, Astyanax hubbsi, increase their swimming velocity upon rotation of a striped cylinder, i.e. in response to a solely visual stimulus. The fish follow the movements of the stripes at (i) rotation velocities between 60 degrees s-1 and 80 degrees s-1, (ii) light intensities of less than 20 lx and, (iii) stimulus widths subtend...

متن کامل

Visual motion with pink noise induces predation behaviour

Visual motion cues are one of the most important factors for eliciting animal behaviour, including predator-prey interactions in aquatic environments. To understand the elements of motion that cause such selective predation behaviour, we used a virtual plankton systemwhere the predation behaviour in response to computer-generated prey was analysed. First, we performed motion analysis of zooplan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 208 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2005